
Page 12 DATAFILE V21 N1

HP-12C Tried & Tricky Trigonometrics
Valentin Albillo (Ex-PPC member #4747)

I love Voyagers. Wish they were still marketed, the most stylish, elegant calculators
ever to be produced, well ahead of their time and sadly missing now. How
wonderful it would be if you could buy a spare 11C/15C or two at your local shop,
so you could carry one neatly in your pocket anytime, anywhere, without fear of
losing it or wearing it out, knowing that an indefinite supply was available.
But regrettably, right now there are just a limited, small number of them still in
working order, less so still mint, and their numbers are constantly decreasing. Say
your dog just chewed your 15C. Or you toddler crashed your 11C against the floor,
and broke the display. One less, not many more still to go. And when the last one
dies, that's it. You'll only see them at some museum. Except for one of their kind.
Enter the HP-12C. Made in the millions. Unsinkable. De facto business standard.
Even my boss does have one (or several?). I own three (or four?). But it also has its
flaws. Maybe for a business user it's very near perfection, with its clever business
function set. But what about us, technically-oriented users? If this is the only
Voyager still available for long decades to come, it better suits our needs too,
right?
Yes, yes, I know. You want scientific functions, you buy a 32SII or an HP-48/49 or
an algebraic model. Now, I know you mean well but no thanks. An algebraic model
is totally out of the question for many of us would never adapt to it nor won't we
ever want to.
Also, an HP48/49 won't fit in my shirt pocket at all, too clumsy to carry easily.
Their screen can't compare with the clarity and boldness of the 12C's. Their style
can't match its golden elegance either. Their CPU will do things fast, far faster than
I need for my daily calculations, and will eat batteries fast too. I've never ever
changed even once my 12C's batteries, though that's nothing to write home about.
After all, it's only 8 years since I bought it, brand new cells included. You won't
expect the 12C to have depleted them after such a short time has elapsed. Ah, but
you'll say: their power, their awesome power ... well, who needs it to do the usual
simple arithmetic tasks, you know, totalling bills, computing taxes and the like?
Not me. I want a good programmable RPN calculator, with the usual assortment of
math functions thrown in for good measure, but in style.
Now, the 12C comes near to satisfying my math wishes (not needs, I never need to
do anything but simple arithmetic for my real-life affairs). It has square root,
exponential and logarithm and raising numbers to powers. It even has reciprocals,
an exotic factorial function and, talk about luxury, linear regression. But
trigonometrics, it has none at all! Nothing! Nada! Not even Pi!
Shock! Horror!! How are we going to make do with not being able to compute an
occasional sine on the only Voyager available? What if our pesky math-oriented

DATAFILE V21 N1 Page 13

neighbour suddenly ask us to please compute the 5 roots of this 5th-degree
equation he was assigned on our oh-so-wonderful 12C? Gosh, that will require
some sines and arc sines! What can we do? Perhaps retreat in shame and humbly
recognize that our golden marvel isn't so marvellous after all? Not a chance!!
We have a purpose in life: to let that disgrace of a human being know that our 12C
can do sines and cosines and arc sines (and whatever trigs he cares to throw at it)
for breakfast. Let's enter "Serious Mode".

Our mighty goal: Trim & Trusty Trigonometrics for the 12C
Yes. Exactly that. To begin with, let's enumerate the 5 required specifications that
our own trigonometrics implementation on the 12C (or any other allegedly decent
implementation) must inexcusably meet to be worth its salt. In strict order of
relevance:
1) All six trigonometric functions in a single program. This is the first and
foremost requirement: all six principal trigonometric functions, namely sine,
cosine, tangent, arc sine, arc cosine, and arc tangent, must be conveniently
computed using a single program (99 steps or less).
Else, we simply haven't achieved our goal. It's all very well to implement a sine
function as a single program, then write another for the arc sine and so on. But
that's neither practical nor useable. The 12C has no mag cards to quickly load the
required program, and keying in the different programs while computing a
complicated, mixed trig expression is out of the question. It's all six functions
computable using a single program or else we should acknowledge defeat.
2) Full accuracy for all functions. No trade-offs between speed and accuracy will
be tolerated. All functions will be computed to the maximum possible accuracy.
Else, if we allow reduced accuracy, we can never really trust the results we get,
specially in a long chain of trig calculations. Would you trust your HP-xx when
computing a sine or arc sine if the manual said the accuracy was "reduced" to save
time or memory? Come on! We want 9-10 digits accuracy and we want them now!
We need to trust the results we get.
As for the input ranges, you must be able to compute an arc tangent for any input
value, not being restricted to -1..+1. Real men compute their arc tangents from
-Infinity to +Infinity, so our program must allow you to compute arc tangent of,
say, 10^10 as easily as arc tangent of 0.1
3) Maximum speed and fast computation times for all functions and all inputs.
Yes, we want all 6 functions, we want full accuracy, and we want it all fast. Real
fast. We want bounded, maximum guaranteed times for any inputs within the
allowed range for every function.
Else you will have the pitfall that many other trig implementations don't tell you at
first: slow convergence, if at all. Some programmers simply use the usual Taylor
Series Expansion for, say, the arc tangent or arc sine in a straightforward manner.

Page 14 DATAFILE V21 N1

Too bad that when you try to compute arc sines or arc tangents of input values near
1, they will either take ages to find an answer or they'll settle for a much reduced
accuracy. In some cases, they'll even fail completely, as when trying to use the
straight arc tangent series to compute arc tangent of, say, 2.
On the other hand, our implementation won't choke at those extreme values or any
other values for that matter. It will deliver its answers with full accuracy and in
times comparable to any non-extreme input values. The computation time for arc
sine and arc tangent will remain bounded, a few seconds for all arguments within
the supported range.
4) Convenience and ease of use. Once the previous sine-qua-non requirements
have been met, we can focus on giving the user extra convenience and ease of use.
For instance, it would be nice if the program would also include some provision to
return the value of Pi, so that it can be used for angular mode conversions or other
purposes. Of course, Pi or Pi/2 can be computed as the result of some
trigonometric functions, but why should the user know or remember the required
formulae? It's far more convenient if Pi or Pi/2 can be returned without any input
from the user at all.
Also, it would be nice if the three direct trigonometric functions (sine, cosine,
tangent) were computed at once. That way, the user would not need to remember
the initial address (step number) for them, as all three would be computed
simultaneously at negligible cost in computing time.
Finally, since preserving the stack between computations is not possible, it would
be very convenient to let the user have as many available storage registers as
possible, preferably 0-4, as the 12C can do storage arithmetic only on those
registers. This means our program must use as few storage registers as feasible.
5) Compatibility. It would be desirable if our neat trigonometrics solution were
also useable in other trigonometrically-challenged HP calculators, such as the
HP-16C, with as little modification as possible. With that goal in mind, we should
refrain from using 12C-specific functions or registers. That's why we use a few
numbered storage registers in our implementation instead of using the financial
registers specific to the 12C, but nonexistent in the 16C. And that's why we don't
use storage arithmetic at all even though it would be very convenient to do so, as it
is unavailable on the 16C.
With that proviso, porting this implementation to the 16C is straightforward: just
insert appropriate labels in the required jump points and change all GTOs to refer
to those labels instead of the original step numbers. Come to that, you can actually
optimize the program a lot using advanced 16C features that the 12C lacks, such as
flags, subroutines, and additional tests. This will allow you to even add extra
functionality, such as degrees/radians conversions for instance. The sky's the limit!

DATAFILE V21 N1 Page 15

Our fearsome foes
Well, in no particular order: only 99 steps, no labels, no flags, no subroutine
capability, no indirect addressing, no increment/decrement branching instructions
for the loops, only two boolean tests and in particular no X=Y? or X#Y? tests, no
x-squared function, no sign function, no absolute value function, etc. All of them
combine to make our task that much more difficult. But succeed, we will.

Program listing
• SQRT is the square root function

• X<>Y is the "X exchange Y" stack operation

01 STO 5 26 * 51 STO 5 76 +
02 1 27 - 52 g SQRT 77 -
03 STO 6 28 g SQRT 53 X<>Y 78 g X=0?
04 RCL 5 29 g GTO 00 54 1 79 g GTO 82
05 RCL 5 30 ENTER 55 - 80 g LSTX
06 CHS 31 ENTER 56 g X=0? 81 g GTO 66
07 STO 5 32 * 57 g GTO 59 82 RCL 4
08 RCL 6 33 1 58 g GTO 39 83 g X<=Y?
09 2 34 + 59 g n! 84 g GTO 89
10 + 35 g SQRT 60 STO 6 85 g LSTX
11 STO 6 36 / 61 RCL 5 86 8
12 Y^X 37 STO 4 62 - 87 *
13 g LSTX 38 3 63 g SQRT 88 g GTO 00
14 g n! 39 X<>Y 64 / 89 g LST X
15 / 40 ENTER 65 STO 5 90 CHS
16 + 41 * 66 RCL 5 91 g GTO 86
17 - 42 CHS 67 CHS 92 CLX
18 g X=0? 43 1 68 STO 5 93 ENTER
19 g GTO 22 44 + 69 RCL 6 94 *
20 g LSTX 45 g SQRT 70 2 95 CHS
21 g GTO 05 46 CHS 71 + 96 1
22 g LSTX 47 1 72 STO 6 97 +
23 1 48 + 73 Y^X 98 g SQRT
24 g LSTX 49 2 74 g LSTX 99 g GTO 37
25 g LSTX 50 / 75 /

Implementation details
• steps 01-22 compute Sin(x) by using its Taylor Series Expansion:

Sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...

the stopping criterium being that the contribution of a new term to the running
sum does not change its value at all. This ensures maximum accuracy and
fastest running time because only as many terms as needed for full accuracy are
used. This approach allows also a wide valid input range from �–5*Pi to +5*Pi.

Page 16 DATAFILE V21 N1

• steps 23-28 compute Cos(x) by using the formula: Cos(x) = Sqrt(1-Sin(x)^2)
As the square root is always taken in its positive value, this restricts the input
range for Cos(x) to the usual range from �–Pi/2 to +Pi/2. If you need to compute
a cosine for values outside that range, either perform previously a range
reduction or else compute it using the formula:

Cos(x) = Sin(x + Pi/2)
The reason for not using this formula instead of the one used in the program is
that this requires having Pi/2 available, which means either recomputing it each
time, doubling processing time, or else requires some initialization and using a
dedicated register to hold it.

• steps 30-36 compute ArcTan(x) by using the formula:

ArcTan(x) = ArcSin(x/Sqrt(1+x^2))

this ensures that the full range -Infinity to +Infinity can be used for the
argument.

• steps 37-91 compute ArcSin(x). To guarantee fast convergence for all x, a
suitable scaling of the input value is previously performed, followed by a
change of variable, and finally a Taylor Series Expansion is used to generate an
intermediate result, which is then scaled back to give the final result.

• steps 37, 82-84 and 89-91 make sure the result has the correct sign in all cases.

• steps 92 computes Pi/2 using the formula: Pi/2 = ArcCos(0)
• steps 93-99 compute ArcCos(x) using the formula

 ArcCos(x) = ArcSin(Sqrt(1-x^2))

As the square root is always taken in its positive value, this restricts the input range
to values of x from 0 to 1, both included. Should you need to compute the arc
cosine of a negative x value, you can use the formula:

ArcCos(x) = Pi/2 �– ArcSin(x)

As before, this formula was not used because it does require having Pi/2 available,
which means either recomputing it each time, doubling processing time, or else it
requires initialization and using a dedicated register to hold it and there's always
the risk of the value being lost if its dedicated register is cleared or overwritten
inadvertently.
You can test that the program is loaded correctly, and its accuracy by checking
these results, shown as they are displayed in FIX 9 (f 9 in the 12C):

DATAFILE V21 N1 Page 17

x Sin(x) Cos(x) Tan(x) Time
0.1 0.099833417 0.995004165 0.100334672 6 sec.
0.5 0.479425539 0.877582562 0.546302490 7 sec.
1 0.841470985 0.540302306 1.557407724 9 sec.

Pi/2 1.000000000 0.000000000 would div by 0 10 sec.
2 0.909297427 0.416146836 2.185039869 12 sec.
Pi -7.098535e-12 1.000000000 -7.098535e-12 19 sec.

x ArcSin(x) ArcCos(x) ArcTan(x) Time
0.1 0.100167425 1.470628906 0.099668661 10 sec.
0.5 0.523598775 1.047197552 0.463647607 12 sec.
1 1.570796327 0.000000000 0.785398163 15 sec.

10 - - 1.471127675 15 sec.
100 - - 1.560796637 18 sec.

1000 - - 1.569796326 18 sec.
1E10 - - 1.570796327 18 sec.

Usage instructions
As the 12C doesn't have user labels, these are the entry points to compute the
functions, with the argument X assumed to be in the display (X-register):

Function To compute, press: Input range

Sin(x) GTO 00, R/S, X<>Y #NAME?
Cos(x) GTO 00, R/S -Pi/2 to +Pi/2
Tan(x) GTO 00, R/S, / -Pi/2 to +Pi/2
ArcSin(x) GTO 37, R/S -1 to +1
ArcCos(x) GTO 93, R/S 0 to +1
ArcTan(x) GTO 30, R/S -9.99E49 to +9.99E49

the constant Pi/2 GTO 92, R/S no input required

Page 18 DATAFILE V21 N1

Notes
• all angles are assumed to be in radians.
• no stack registers are preserved nor is X stored in LSTX, but R0-R3 are

available at all times to store intermediate results or constants. The financial
registers can be used as well.

• for Sin(x), Cos(x), and Tan(x) you can use f PRGM or GTO 01 instead of GTO
00. After any function is computed, the program pointer is left again at step 00,
so you can compute a series of sines, cosines and tangents by simply pressing
R/S.

• Sin(x) and Cos(x) are computed simultaneously. Sin(x) is left in the Y-register,
and Cos(x) is left in the X-register (display), so you can obtain Tan(x) by
simply pressing the [/] (division) key. If Cos(x) equals 0, you can't perform the
division but must assume instead that Tan(x) becomes infinite

• the input range for Sin(x) goes from -5*Pi to +5*Pi, but large values of x (say >
2*Pi) result in reduced accuracy and increased running times, so you'd do well
restricting your arguments to the range from -2*Pi to +2*Pi and reduce any
larger ones to that range (by taking the remainder modulus 2*Pi).

Example 1
Find all 5 real roots of the quintic: 16 x^5 - 180 x^3 + 405 x -136 = 0
Though 5th-degree equations (a.k.a. quintics) are not in general soluble by
algebraic means, after some fruitful and enjoyable labour of mathematical creation
I came to this neat expression for its 5 real roots:

x = 3 * Sin[1/5 * (ArcSin(136/243) +0*Pi, ±2*Pi, ±4*Pi)]

Note that we'll need to compute the sine of arguments exceeding Pi/2, but this is no
problem for our program, so let's compute all roots on our 12C easily by following
these steps:

1. As we will need Pi frequently, first we'll store a copy of it in R0:

GTO 92 (Pi/2), R/S: 1.570796327 (this is the value of Pi/2)
2, *, STO 0: 3.141592654 (Pi stored in R0)

2. Now we'll compute u = ArcSin(136/243) and, as we'll need it 5 times, we'll

store the result in R1:

136, ENTER, 243, / : 0.559670782
GTO 37 (ArcSin), R/S, STO 1 : 0.593988482 (u)

DATAFILE V21 N1 Page 19

3. We have everything we need, now we'll compute all the roots. The 1st one is
x1 = 3 * Sin(u / 5):

RCL 1 (u), 5, /, fPRGM, R/S : 0.992951849 (Cos u)
X<>Y : 0.118518464 (Sin u)
3, * : 0.355555391 (x1)

4. Encouraged by the success, we go now after the second root, which is:

x2 = 3 * Sin[(u + 2*Pi) / 5]:

RCL 1 (u), RCL 0 (Pi),2,*,+,5,/ : 1.375434758
fPRGM, R/S : 0.194121239 (Cos)

X<>Y : 0.980977545 (Sin)
3, * : 2.942932636 (x2)

5. The remaining roots are computed likewise, and their values are:

x3 = 3*Sin[(u - 2*Pi)/5] = -2.723187320
x4 = 3*Sin[(u + 4*Pi)/5] = 1.463277005
x5 = 3*Sin[(u - 4*Pi)/5] = -2.038577707

6. Finally, we test the correctness of the roots and their accuracy by computing
their sum and their product. The results for our computed roots are:

Sum of the computed roots = 0.000000005 (should be 0)
Product of the roots = 8.499999962 (should be 8.5)

So you see, after a long chain of trigonometric calculations (21 in all) and for quite
sizable arguments (>2.63), we've got excellent accuracy throughout (9-10 correct
digits for the roots).

Example 2
Check the equality: Tan 50º + Tan 60 º + Tan 70 º = Tan 50º * Tan 60º * Tan 70º
i.e: the sum of their tangents is the same as the product of their tangents. As the angles
are expressed in degrees, we'll have to convert them to radians on the fly. Let's follow
these steps:

1. We'll need the conversion factor Pi/180 = (Pi/2)/90, which we'll store in R0:

GTO 92 (Pi/2), R/S : 1.570796327 (Pi/2)
90, /, STO 0 : 0.017453293 (Pi/180)

Page 20 DATAFILE V21 N1

2. Now, we'll compute Tan(50º), which we'll store in R1:

50, RCL 0, * : 0.872664626 (50º in radians)
fPRGM, R/S : 0.642787610 (Cos 50º)
/ , STO 1 : 1.191753592 (Tan 50º)

3. Same for Tan(60º), stored in R2:

60, RCL 0, * : 1.047197551 (60º in radians)
fPRGM, R/S : 0.500000000 (Cos 60º)
/ , STO 2 : 1.732050807 (Tan 60º)

4. Finally, same for Tan(70º), stored in R3:

70, RCL 0, * : 1.221730476 (70º in radians)
fPRGM, R/S : 0.342020144 (Cos 70º)
/ , STO 3 : 2.747477412 (Tan 70º)

5. Now, for the check:

RCL 1, RCL 2, +, RCL 3, + : 5.671281811
RCL 1, RCL 2, *, RCL 3, * : 5.671281800

and we see that the results agree to 1 unit in the 8th position, so we may say
confident that the equality holds.

[Valentin wrote this article in time for the HP-12C anniversary issue (V20N5) but
there was insufficient space to include it and I preferred to publish his excellent
HP-11C article instead, since it was its anniversary as well. Needless to say, he
was mortified to discover, upon reading the issue, that Wlodek planned to write a
follow-up article on providing scientific functions, including trig, for the HP-12C.
In a similar vein, Wlodek wrote his article in time for the V20N6 which was the
Newton-themed, November �– December 2000 issue, hence the reference to the
theme in the article and, once again, I was unable to include it due to pressure of
space.
I therefore wish to take pains to point out that neither Wlodek nor Valentin have
seen each others�’ articles. Any similarities are a consequence of chance or a result
of the constraints imposed by the limitations of the HP-12C.
Thus, while there may be some overlap in material, I trust that your enjoyment of
either article �– Wlodek�’s follows �– will not be spoilt. Ed.]

