
DATAFILE Vxx Nx Page 1

HP Prime : A Programmer’s View
Mark Power, mark.power@btinternet.com

It has been around eighteen months since the HP Prime hit the market, so I thought
it really is about time that I wrote about my experiences. Wlodek observed in his
2014 AGM report that whilst there was interest in the HP Prime, it has been
nothing like that when the HP-41, HP-71 or HP-48 families were introduced. This
is a shame as it is the first real major shift from those architectures and brings us an
affordable, state of the art calculator.
Over the years I’ve progressed through a variety of machines: Commodore P50,
TI-57, Casio fx-502p, Casio fx-702p, HP-41CV, HP-48SX, HP-48GX and now the
HP Prime. Each of these was purchased to run programs that I’ve written and each
was sold to pay for the next model. The Commodore, TI and Casio calculators
primarily ran maths programs that I wrote when I was at secondary school and
sixth form. When I could finally afford them I moved over to HP when I went to
university to study computer science. The HP-41 allowed me to write software in
FOCAL and machine code that otherwise I would have had to get on my bike and
cycle several miles to try out on the university minis and mainframes. Best of all, I
could carry these programs around with me.
My use of calculators for calculating really peaked at university with differential
equations, matrices, integration and differentiation, errors in computer systems and
hexadecimal arithmetic. Since leaving university, my use of maths has really
regressed back to simple spreadsheets with the odd pie chart or graph. For this
reason, I really feel that I’m totally unqualified to comment on the HP Prime’s
maths capabilities. Indeed I have pressed the CAS button on a couple of occasions,
played for a few minutes, thought to myself “That’s nice” and went back to doing
simple sums and graphs.
So beyond simple maths programs, I’ve used programmable calculators as a
platform for programs that people would use in their professions. On the Casio fx-
502p I wrote a program to help a friend’s Dad with rates calculations when he
worked for the local council. On the HP-41 I wrote machine code routines to
simplify entry of longitude and latitude for Colin Crowther so that he didn’t have
to worry about positive and negative value entry when flying Jumbo Jets. For
myself I wrote a terminal emulator on the HP-48, which I recently ported to the
HP-50 for a guy in the NHS who still uses the program to talk to medical
equipment.
As well as this serious stuff, for every single calculator I’ve owned I’ve written
simple games to get the hang of the programming language of the machine,
determine its speed and generally show off the capability of a device that you can
carry in your pocket. Of course, we now have amazing toys like the iPod Touch,
iPhones and their clones that make our calculators, up to the HP-50g, look
positively antiquated. So when presented with an HP Prime I was really exited to

Page 2 DATAFILE Vxx Nx

try out programming a fast, colour touch screen machine with masses of storage
and the obvious place to start was with a game.

Programming on the go
I mentioned the iPod Touch, because my favourite game over the last few years
has been a card game that it runs. This made me wonder how good the HP Prime
would be at doing the same. I’ve tried a bit of iOS programming and whilst it is
clear that great things can be accomplished you need a full development
environment, a lot of time to get the hang of the frameworks and libraries, and a
laptop or desktop on which to do the development.
The great thing about the HP Prime is that while not perfect for on the go
programming, you can do it and without a massive learning curve. Indeed the
Prime has some great features to help you with this: a reasonably straightforward
BASIC like language, lots of memory to create copies of programs so that you can
play without fear of destroying earlier versions and a very comprehensive built in
help system so that you don’t need to carry around a massive manual (though you
can of course carry the PDF manual on your iDevice should you feel the need).
The other reason why I wanted to try on the go programming is that I don’t
actually own a PC and there is still, after eighteen months, no officially supported
way to run the HP Prime software on a Mac - especially one as old as mine. If you
have a Mac with an Intel chipset, you can try using WINE to run the HP Prime
emulator, or if you are feeling really brave you can try libhpcalcs, a very basic
portable (Windows/MacOS X/Linux) connectivity kit library. This seems like a
pretty basic problem for the HP Prime given how common Macs are now and a
backwards step when you think that as far back as the HP-48S/SX you could use
pretty much any development machine you liked because the calculator supported
the Kermit file transfer protocol.

Playing cards
Back in Datafile V14N1 Joe Horn wrote a very neat card shuffler for the HP-48:

This would be the foundation for my Prime programming attempt, as the Prime
supports list of numbers and would also allow me to get an idea as to how fast a
calculator based on a modern ARM chip could be when freed from the overhead of
emulating a Saturn architecture.
This is the code I settled on:
NewDeckN(top)
BEGIN
 RETURN MAKELIST(I,I,1,top,1);
END;

DATAFILE Vxx Nx Page 3

NewDeck()
BEGIN
 RETURN NewDeckN(52);
END;

Shuffle()
BEGIN
 LOCAL c,l1,l2,l3,n;
 NewDeck()▶l1;
 FOR c FROM 1 TO 52 DO
 RANDINT(1,SIZE(l1)-2)▶n;
 SUB(l1,n+2,SIZE(l1))▶l2;
 SUB(l1,1,n)▶l3;
 CONCAT(l2,l1(n+1),l3)▶l1;
 END;
 RETURN l1;
END;

As you can see, the code is significantly longer, but I’ve made it a bit more flexible
than the original. NewDeck() creates a list containing the numbers 1 to 52.
NewDeckN(n) in called by NewDeck() and creates an arbitrary list of numbers
starting at 1 and going up to n using a single command. Shuffle() uses NewDeck()
to create a deck of cards and then shuffles them. This last one is much less elegant
than the original HP48 version as chopping up lists is a bit more involved.
If you want to use these functions in programs of your own, you need to add
EXPORT before the function name, otherwise they are local to the program file.
Despite the size of these functions, particularly Shuffle(), they serve to show how
fast the Prime is. Wrap them in a function like this:

EXPORT TimeShuffle(n)
BEGIN
 LOCAL c, ts;
 TICKS▶ts;
 FOR c FROM 1 to n DO
 Shuffle()▶L1;
 END;
 RETURN (TICKS-ts)/n/1000;
END;

Run TimeShuffle(100) and you’ll see that the Shuffle() program runs in about
0.02s. Joe’s original on the HP48GX took 0.76s and my System RPL version in
Datafile V15N21 took 0.48s. The modern hardware is certainly very quick.
If you look at my Shuffle() program you’ll notice a few things:

1 http://www.hpcc.org/datafile/V15N2/shuffle.html

Page 4 DATAFILE Vxx Nx

1. I have used ▶ to store values in variables. I have been asked on the MoHPC
forum how to enter this character. The answer is that it is by pressing Shift
then EEX, which is labeled STO▶ on the keyboard. This style of assignment
is shown in the HP Prime User Guide in some places and was the one I
picked up on. Other programs in the User Guide use an alternative form of
assignment which other people have picked up on as their first choice
format:

variable:=value;

This is easier to type on a PC, arguably more consistent with other languages
and easier to pass around in a PC environment or print as it doesn’t rely on a
special character. The choice is yours as to which to use, just don’t try to
switch from one to the other without switching around the order of the
variable and the value.

2. I’ve used l1, l2 and l3 as variable names. That’s lowercase L followed by 1,
2 or 3. These came about because I was playing with using the global list
variables that are L0, L1, L2, L3… L9 and then just changed from upper to
lower case. The variables on the Prime are case sensitive: “L0” is not the
same as “l0”.

3. This led to another observation: you need to be really careful with variable
names on the Prime. If you happen to pick a variable name that already
exists on the calculator, you can send up with valid syntax but when you run
the code it behaves in ways you weren’t expecting. For example: “ticks”
entered in a program is the same as “TICKS” which is the same as
“TICKS()”. Maybe this was done to provide flexibility, but it does seem odd
and can trip you up if you happen to pick the same name as a reserved word
– and there are lots of those.

As my program got more complicated, other things have cropped up.
IF (expr1) AND (expr2) AND (expr3) will always evaluate expr3 even if expr1 or
expr2 is false. This is important as if you have a list, want to pick a particular
element in it and then compare that element to a value. It is no good checking the
length of the list in expr1 or expr2 and checking the value of the element in expr3
as it will cause the program to terminate abnormally.
Early firmware versions of the Prime were pretty buggy. Entering the debugger
could quite often cause the Prime to crash and reboot. The latest version is much
better, so if you have a Prime and haven’t updated to 6975 then you really should.
There have been other changes between firmware versions. As well as additional
functionality the sigma character used in ∑LIST and other keywords changed
between different versions. So programs that worked perfectly on older versions of
firmware generate errors on newer versions. This means you need to load the text,

DATAFILE Vxx Nx Page 5

find the syntax error, which fortunately is quite easy using on the Prime and
change the keyword to the new version.
Before moving on I should mention one particular annoyance with programming
the Prime directly: you rely a lot on the alpha keys. Getting used to the layout is
expected with any new calculator. The real problem is the colour of the lettering on
the keys. Under low energy bulbs in particular, the orange on white and worse still
the orange on gray of the numeric keys is terrible which is a real shame as the rest
of the hardware is excellent.

Drawing cards
The main draw of the Prime over previous HP calculators is the colour screen. It is
a world apart from all previous generations and whilst not up to “retina”
resolutions, it is still stunning for a calculator. Newer firmware allows you to
choose colours for lines on graphs rather than being stuck with a limited set of
preset colours.
As already discussed the Prime is very fast, so the drawing primitives don’t require
rework to make them quick – unlike on the HP48 series. You also benefit from
multiple graphics objects (grobs) being available into which you can draw, so you
can prepare part of a picture in one grob and then paste or “BLIT” it into another
nearly instantaneously.
I use this technique to build up the playing cards and overall board in my game and
then BLIT them onto the screen with no flicker or delay.
Playing cards are easy to draw as the Prime has a very large character set built in
which includes ♣♦♥♠, chess and dice symbols. These are in addition to Latin,
Greek, Coptic, Cyrillic, Chinese, Punctuation, Subscript, Superscript, Currency,
Arrows, Maths Operators, Block Drawing, Geometric Shapes and Dingbats.

Taking input
In addition to the colour ability of the screen, it is touch sensitive and the latest
firmware adds more touch gestures to the built in applications. If you are writing
your own you can use MOUSE or WAIT to detect touches or gestures on the
screen. For keyboard input you can use GETKEY or WAIT.
I chose to use MOUSE and GETKEY in my program as neither stop execution. If
starting again with the input routines I would experiment with WAIT as it
combines both mouse, gesture and keyboard input all in one. The downside being
that it is quite difficult to unpick all the different options that it can return.
I found handling of the MOUSE result quite hard to process as you don’t seem to
be able to compare it to {{},{}} directly. This indicates that the screen was not
touched. To overcome this I found I had to use the STRING function on the result
of MOUSE and then compare it to the string “{{},{}}”.

Page 6 DATAFILE Vxx Nx

The downside of using MOUSE and GETKEY is that they form a busy wait, so my
program runs continuously looking for either a screen touch or a key to be pressed.
This leads to an unexpected side effect that I’ve yet to find a solution to.
Playing the complete game typically takes several minutes, and when you finish
rather than being presented with the normal stack display the calculator turns itself
off. This seems to be a bug in the automatic turn off handling and is present across
all versions of firmware up to and including 6975. I suspect that GETKEY and
MOUSE are not resetting the automatic turn off timer.
In an early version of my code I used INPUT and MSGBOX to display the final
congratulations screen and score, but I found that these do look at the auto turn off
state and so rather than showing the score, the calculator turned off. Hopefully this
will get fixed in some future firmware version. In the meantime I’ve had to
implement my own version of MSGBOX rather than rely on the built in version.

Putting it all together
I’m not going to reproduce the whole of the game here in Datafile as it runs to
many pages. Instead you will need to look at it or download it from:
http://www.hpcc.org/programs/hpprime/sol_bg/SOL_BG.txt - or -
http://www.hpcc.org/programs/hpprime/sol_bg/SOL_BG.hpprgm

Instructions – Baker’s Game
As you can see from the screen shots above I have put in a simple help screen, but
feedback from MoHPC suggests that my description of Baker’s Game is too brief,
so here are expanded notes (with thanks to Jeff O.2).
At start up the board has three main areas. In the top left are four holders labelled
with “A”. These are the destination piles that you put cards onto in suits, starting
with Aces. Once a card is here it cannot be moved back unless you use Undo.
Top right are four holders labelled “R” which can each hold one “Reserve” card.
The centre of the screen comprises 8 columns of cards. You can only move the
bottom card of each column. You can only move a card to another column if the

2 http://www.hpmuseum.org/forum/thread-379.html

DATAFILE Vxx Nx Page 7

cards are in the same suit and in descending order (Ace low). You can move any
single card to an empty Reserve holder. Reserves can move back to the main deck.
You can move cards by touching them to highlight them and then touching a
destination location. If the location is not a legal move, the highlight is removed.
To speed things up when putting cards onto the destination piles top left you can
double tap a card and it will move without needing to move your finger.
The game is over when you have built up the suits on the destination piles top left
so that four kings are shown and the rest of the board is empty.
As well as touching the screen to move cards you can use the keyboard. Pressing
Help shows the help screen shown above. Pressing the Menu button shows actions
that are selected by touching the screen. The Esc button exits the game. Pressing
the A (Vars/Chars) button or Auto soft menu button moves as many cards as
possible from the Reserve holders and main deck into the destination piles. You
may find this useful towards the end of a game when you have built up runs of
cards in the main deck.
You can Undo moves either with the soft menu option or by pressing the U
(4/Matrix) key. I’ve limited Undo to the last 10 moves to avoid running out of
memory as I hold the whole of the deck. It’s not very efficient in memory terms
but it is easy to program. If you want another go at the same deal and Undo doesn’t
give you enough to work with press the Menu button and then touch Again on the
screen. If you’ve had enough and want a new deck press Menu and then Deal.

Summing Up
Like all your first programs on a new platform, you look back on your code and
cringe. I hadn’t spotted global definitions until I saw code other people put on the
Internet so I’ve got magic numbers all over the place. I was intrigued about “▶”
versus “:=” and ended up with both. I wanted to use meaningful names for
variables, but the orange keyboard legends just made this a chore. All in all the code
could do with some refactoring and tidying up which I’ll do when there is Mac
connectivity software. It’s not yet the model of tutorial code I hoped it would be.
On the positive side I was able to knock this up on the calculator, with some notes
jotted on a few pieces of paper, without having to learn a massive framework or use
a separate PC or Mac as a development environment. As for playability, this game is
as responsive and I think as engaging to play as versions on other platforms.
Machine code games on the HP48 series became very well developed over time and
what I think is encouraging about the Prime is that you can get the same
responsiveness without resorting to low level code. You also get that fabulous colour
screen and touch capability.
Early Prime firmware versions were very frustrating but 6975 seems much more
stable. Perhaps not up to HP41/HP48 standards, but getting there. If you’ve not
explored the Prime until now, I’d strongly recommend you give it a go.

