Eight HP-12C Games

Tony Hutchins, \#1049
The first 7 require a seed in i. Re-play does not require a re-seed. None require registers cleared beforehand. The classic seed is .5284163 .7 digits are enough.

1. CRAPS. Set i \& FV. Repeat: bet R/S and see roll and updated balance. Restart: f PRGM R/S. FV=0=starting balance for a new shooter. On the first throw: If total $=7$ or 11 ('natural') then win else if total $=2$ or 3 or 12 ('crap') then lose else total='point' and throw again. On subsequent throws: If total $=7$ then lose else if total='point' then win else throw again.

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
f P/R		g LSTX	28-43 36	4	57-
\dagger CLEAR PRGM	00-	1	29-1	9 x ¢ y	58-43 34
PMT	01- 14	0	30- 0	g GTO61	59-43,3361
0	02- 0	\div	31- 10	g GTO 77	60-43,33 77
PV	03-13	RCL 1	32-45 1	3	61- 3
0	04 -	+	33-40	X	62- 20
n	05-11	1	34- 1	g x x ${ }^{\text {d }}$	63-43 34
6	06-	0	35- 0	g GTO 77	64-43,33 77
RCL i	07-45 12	\div	36-10	1	65-1
9	08- 9	\square	37- 40	-	66-30
9	09-	9 PSE	38-43 31	9 x ,	67-43 34
7	10-	RCL PV	39-45 13	g GTO 75	68-43,33 75
X	11- 20	g $\mathrm{x}=0$	40-43 35	4	69-4
g FRAC	12-43 24	g GTO 53	41-43,33 53	-	70- 30
i	13-12	RCL 3	42-45 3	-	71- 30
X	14- 20	7	43-7	g $\mathrm{x}=0$	72-43 35
1	15- 1	-	44- 30	g GTO 75	73-43,33 75
+	16-40	g $\mathrm{x}=0$	45-43 35	g GTO 04	74-43,33 04
g INTG	17-43 25	g GTO 77	46-43,33 77	RCL PMT	75-45 14
g CFi	18-43 14	RCL 3	47-45 3	g GTO 79	76-43,33 79
RCL n	19-45 11	RCL) 0	48-45 0	RCL PMT	77-45 14
2	20- 2	-	49-30	CHS	78-16
g $x \leqslant y$	21-43 34	g $\mathrm{x}=0$	50-43 35	RCL FV	79-45 15
9 GTO 24	22-43,33	g GTO 75	51-43,33 75	+	80-40
g GTO 06	23-43,33	g GTO 04	52-43,33 04	FV	81- 15
RCL1	24-45 1	1	53-1	g GTO 00	82-43,33 00
RCL 2	25-45 2	PV	54-13	f P/R	
\pm	26-40	RCL 3	55-45 3		
STO 3	27-44 3	STO 0	56-44 0		

2. DEALER/LOTTO. Set i , PV \& FV. R/S. Wait. RCL 1, RCL 2, ... or optionally store modulus in PMT and RCL 1 R/S, RCL 2 R/S ... Restart: f PRGM R/S. FV = sample size ($\max =12$), $\mathbf{P V}=$ Population size. $\mathrm{PV}>=\mathrm{FV}$

Selects items without replacement from a numerical deck or bin, numbered 1,2,3... up to PV('population value'). No concept of shuffle is needed. Not really a game but you can deal poker hands ($\mathrm{PV}=52$ and modulus $=13$ or $\mathrm{PV}=53$ with joker considered as the first card of the fifth suit=card 5.1), play bingo or even choose tarot cards. Or, best of all you can choose Lotto numbers - here we use PV=40 and $\mathrm{FV}=6$ for that, and just RCL 1 , RCL $2 \ldots$ RCL 6 to see the numbers. For lotto line 39 can just be GTO 00 and we don't need lines 41-57. So, in only 40 lines we have a 12C Lotto generator.

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
f P/R		g GTO 32	19-43,33 32	g GTO41	39-43,33 41
f clear PRGM	00-	RCL 9 CFi	20-45,4314	g GTO 03	40-43,33 03
0	01- 0	RCL PMT	21-45 14	R/S	41- 31
n	02-11	-	22-30	1	42-1
RCL PV	03-45 13	9 $\mathrm{x}=0$	23-43 35	-	43-30
RCL i	04-45 12	g GTO 29	24-43,33 29	RCL PMT	44-45 14
9	05- 9	RCL n	25-45 11	\div	45-10
9	06-9	g $\mathrm{x}=0$	26-43 35	9 INTG	46-43 25
7	07- 7	g GTO 32	27-43,33 32	1	47-1
X	08- 20	g GTO 20	28-43,33 20	g LSTX	48-43 36
g FRAC	09-43 24	RCL 0	29-45 0	9 FRAC	49-43 24
i	10-12	n	30-11	RCL PMT	50-45 14
\times	11- 20	g GTO 03	31-43,33 03	X	51- 20
g INTG	12-43 25	RCL) 0	32-45 0	1	52 -
1	13-1	n	33-11	+	53-40
+	14- 40	RCL PMT	34-45 14	\%	54- 25
PMT	15-14	g CFi	35-4314	+	55-40
RCL n	16-45 11	RCL n	36-45 11	$+$	56-40
STO 0	17-44 0	RCL FV	37-45 15	g GTO 41	57-43,33 41
g $\mathrm{x}=0$	18-43 35	g $x \leqslant y$	38-43 34	f P/R	

3. JIVE TURKEY. Set i \& $F V$. R/S. Repeat: Guess($0-99$), R/S, seeing plus 1 if you are high and -1 if you are low, and your number of guesses if you correctly guess the secret number. Restart: f PRGM R/S. FV= \%Truth (0-100).
Originally by Maurice E.T.Swinnen founder and Editor of TI PPC Notes (19801982). Transcribed for HP-67 in PPC Journal Jan 1978 by Terry Mickelson(PPC \#1926). The HP-67 has flags and subroutines. Here we use FV as a flag and replicate the 63 line HP-67 version in 47 lines.

You won't know what a +1 means after your first guess. Just re-run with the same guess and if you were right you'll see a 2 :-)
i or FV can be changed at any time. Lower FV if you are getting jived too much. $\mathrm{FV}=0$ is nice and simple - then your false values will indeed be zero. :-) Note the \%T at line 21 is the $\%$ Truth calculation. This is misleading :-).

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
f P/R		7	16-7	PV	33-13
f CLEAR PRGM	00-	X	17-20	RCL1	34-45 1
0	01- 0	g FRAC	18-43 24	RCL 2	35-45 2
STO 0	02-44 0	i	19-12	-	36-30
PV	03-13	ENTER	20-36	g $x=0$	37-43 35
g GTO 13	04-43,3313	\%T	21- 23	g GTO 07	38-43,33 07
R \downarrow	05-33	X	22- 20	9 LSTX	39-43 36
STO 1	06-44 1	g INTG	23-43 25	RCL1	40-45 1
RCL 0	07-45 0	RCL PV	24-45 13	g $x \leqslant y$	41-43 34
R/S	08-31	g $\mathrm{x}=0$	25-43 35	g GTO 46	42-43,33 46
STO2	09-44 2	g GTO 05	26-43,33 05	RCL PV	43-45 13
1	10-1	R \downarrow	27-33	CHS	44-16
STO +0	11-4440	RCL FV	28-45 15	g GTO 08	45-43,33 08
PV	12-13	g, $x \leqslant y$	29-43 34	RCL PV	46-45 13
RCL i	13-45 12	g GTO 34	30-43,33 34	g GTO 08	47-43,33 08
9	14- 9	1	31- 1	f P/R	
9	15- 9	CHS	32-16		

4. SUPER BAGELS. Set $i \& F V$, base $R / S \rightarrow F V .0$ (your target). Repeat: Guess (an integer of FV digits), R/S and see FERMI.PICO, until you win (FERMI=FV, PICO=0). Restart: f PRGM base R/S. BTW the HP-67 Games Pac version of this is 223 lines! $\mathbf{F V}=$ The number of digits in the secret integer (1-6 here, 1-8 on the 67 version). Your mission is of course to guess the secret integer. Before pressing R/S to start a game you must specify the secret number base. 10 R/S uses decimal - i.e. all digits from 0-9. 8 R/S uses octal, 2 R/S uses binary, etc. FERMI is the number of direct hits, and PICO the wayward hits. The direct/wayward hits are guess digits in the correct/wrong place in the secret number. FERMI.PICO=0.0 means we have 4 BAGLES! :-).
Example 1: Let's run with .5284163 in i and the usual 4 decimal digits: 4 FV f PRGM 10 R/S $\rightarrow 4.0$ (your target), and make 5284 our first candidate.

5284 R/S $\rightarrow 0.3$	2580 R/S $\rightarrow 2.2$	8520 R/S $\rightarrow 4.0$	Done!
Example 2: \dagger PRGM 10 R/S $\rightarrow 4.0$			
1234 R/S $\rightarrow 1.0$	5678 R/S $\rightarrow 0.2$	9178 R/S $\rightarrow 0.4$	1978 R/S \rightarrow 1.3
1798 R/S $\rightarrow 2.2$	1789 R/S $\rightarrow 4.0$	Ahha! The Frenc	evolution :-)

Example 3: f PRGM 10 R/S $\rightarrow 4.0$

This code uses both $\mathrm{CFj} \& \mathrm{Nj}$ as variable length ($\mathrm{j}=1$ to 6) vectors, which makes it

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
f P/R		X	33-20	RCL 0	67-45 0
f CLEAR PRGM	0-	PMT	34-14	n	68-11
9 CFO	01-43 13	RCL) 0	35-45 0	1	69-
RCL) 0	02-45 0	n	36-11	g Ni	70-43 15
RCL i	03-45 12	RCL g Ni	37-45,4315	R \downarrow	71- 33
9	04-9	RCL 9 CFi	38-45,4314	g $\mathrm{x}=0$	72-43 35
9	05- 9	RCL PMT	39-45 14	g GTO 75	73-43,3375
7	06-7	-	40-30	g GTO60	74-43,3360
X	07- 20	9 x=0	41-43 35	1	75-1
g FRAC	08-43 24	g GTO66	42-43,33 66	STO - 0	76-4430 0
i	09-12	RCL FV	43-45 15	RCL 0	77-45 0
\times	10- 20	n	44-11	g $\mathrm{x}=0$	78-43 35
g INTG	11-43 25	RCL n	45-45 11	g GTO 81	79-43,33 81
9 CFj	12-43 14	RCL 9 CFi	46-45,4314	g GTO 25	80-43,33 25
0	13- 0	RCL PMT	47-45 14	RCL FV	81-45 15
g Ni	14-43 15	-	48-30	n	82-11
RCL n	15-45 11	9 $\mathrm{x}=0$	49-43 350	0	83- 0
RCL FV	16-45 15	g GTO 55	50-43,33 55	RCL 9 Ni	84-45,4315
9 x ¢	17-43 34	RCL n	51-45 11	g $\mathrm{x}=0$	85-43 35
g GTO 21	18-43,33 21	g $\mathrm{x}=0$	52-43 35	g GTO 88	86-43,33 88
g GTO02	19-43,33 02	9 GTO 75	53-43,33 75	1/x	87- 22
R \downarrow	20-33	g GT0 45	54-43,33 45	+	88-40
R/S	21- 31	R \downarrow	55- 330	0	89- 0
PV	22-13	n	56-11	g Ni	90-43 15
RCL FV	23-45 15	RCL 9 Ni	57-45,4315	R \downarrow	91- 33
STO 0	24-44 0	$9 \mathrm{x}=0$	58-43 35	RCL 9 CFi	92-45,43 14
1	25-	g GTO62	59-43,33 62	R \downarrow	93-33
0	26- 0	RCL 9 CFi	60-45,43 14	RCL n	94-45 11
RCL PV	27-45 13	g GTO 51	61-43,33 51	g $\mathrm{x}=0$	95-43 35
\%	28- 25	1	62-1	g GTO 20	96-43,33 20
g INTG	29-43 25	0	63- 0	R \downarrow	97- 33
PV	30-13	g Ni	64-43 15	g GTO 84	98-43,33 84
g LSTX	31-43 36	g GTO 75	65-43,3375	f P/R	
9 FRAC	32-43 24	R \downarrow	66-33	FERMI + P	$\mathbf{C O} \leq \mathbf{F V}$

easily the most complex game here. Each guess digit is processed just the once, but the backward jump at line 74 can initiate some implicit secondary processing. The 5667 R/S $\rightarrow 2.1$ above illustrates this, where the 2 sixes contribute "1.1" :-)
5. SUM OF DIGITS (SOD). Set i. R/S see initial $\operatorname{SOD}(0-18)$ of the secret number (0-99). Repeat: Guess to be added to secret number, R/S, seeing 0.000000000 if you are over 99 , in which case guess is not added, 99.00000000 if you win, and the SOD of the new secret number otherwise. Restart: f RRGM R/S
Thanks to Gene Wright who pointed this game out to me - it is from page 27 of HP Digest number 5, 1979. There a 41 line program was used, for the HP33-E, requiring 4 registers. Here we use only i and R_{0}, and 36 lines :-) This, our third "secret number" game, is the shortest of all the games here, and quite delightful to play! The random number generator using the 997 and the .5284163 seed is taken from the "HP-12C Solutions Handbook". See the Fruit Machine game for the simplest seed :-)

Example 1: .5284163 i R/S \rightarrow 11. The secret number is one of eight: $29,38,47,56,65,74,83$ or 92 . We don't know which. The "safest" addition is 7 . Note all possible answers have $\operatorname{SOD}=7(7,16,25$ etc.). $7 \mathrm{R} / \mathrm{S} \rightarrow 9$. There are 10 possible numbers with $\operatorname{SOD}=9$: $9,18,27,36,45,54,63,72,81$ and 90 . Taking 7 off these we get $2,11,20, \mathbf{2 9}, \mathbf{3 8}, \mathbf{4 7}, \mathbf{5 6}, \mathbf{6 5}, 74$ and $\mathbf{8 3}$. We still have a choice of $7!9 \mathrm{R} / \mathrm{S} \rightarrow 99.0000000$ What a fluke!!!! So the original was 83.
Example 2: $R / S \rightarrow 10$. Again a choice of $8(19,28, \ldots, 91)$. Lets be bold and try not 8 but something random, say $50 R / S \rightarrow 0.000000000$. So, the number is over 49. It must be one of $55,64,73,82$ or 91 . 26 R/S $\rightarrow 9$. We have now boosted our number to 81 or 90.18 R/S $\rightarrow 99.0000000$. Yeah! This is fun, isn't it?
Example 3: $R / S \rightarrow 9$. Now a choice of 9. $50 R / S \rightarrow 14$. $22 R / S \rightarrow 99.0000000$. Another sheer fluke. I'm starting a strategy. 22 has SOD 4, and 4+14=18. The 22 itself was just a guess as the 14 meant the number must be up to over 59 at least. So, possibly 40 to go - and 22 is roughly at the midpoint. Can you tell I've never played this game before?
Check out the code that replaces a 2 digit number with the sum of its digits: 10% \square INTG $9 \times-$. (Lines 13-19). That was the key to shrinking this one :-)
6. PONTOON (Vingt et un or 21 or Blackjack). Set i. R/S see 0.00 . Repeat: R/S, seeing new total score. Negative score=bust. Stop R/S or hitting when desired. Simulate any desired banker strategy by restarting. Restart: f PRGM R/S
Here we use only i, R_{0} and R_{1}.

Keystrokes	Display		Keystrokes	Display	Keystrokes	Display
f P/R			9 $\mathrm{x}=0$	16-43 35	2	33- 2
f CLEAR PRGM	00-		g GTO 25	17-43,33 25	g $x \leqslant y$	34-43 34
CLX	01-	35	9	18-9	g GTO 40	35-43,33 40
STO 0	02-44	0	9 x (x \%	19-43 34	+	36-40
STO 1	03-44	1	g GTO 22	20-43,33 22	2	37- 2
R/S	04-	31	R】	21- 33	-	38-30
1	05-	1	1	22-1	g GTO 04	39-43,33 04
3	06-	3	+	23-40	2	40- 2
RCL i	07-45	12	g GTO27	24-43,33 27	1	41- 1
9	08-	9	1	25-1	RCL 0	42-45 0
9	09-	9	STO 1	26-44 1	9 x ¢ y	43-43 34
7	10-	7	STO +0	27-4440 0	CHS	44-16
X	11-	20	RCL 1	28-45 1	CHS	45-16
g FRAC	12-43	24	g $\mathrm{x}=0$	29-43 35	g GTO 04	46-43,33 04
i	13-	12	g GTO 40	30-43,33 40	f P/R	
X	14-	20	RCL) 0	31-45 0		
g INTG	15-43	25	1	32-1		

Example 1: .5284163 $i R / S \rightarrow 0$. $R / S \rightarrow 10 . R / S \rightarrow 18$. Close enough to 21 for me. Let's imagine a banker who holds after $16: f R R G R R / S R / S \rightarrow 4 . R / S \rightarrow 15$ $R / S \rightarrow 18$. A draw? Let's keep going hoping for something interesting - a few aces at least.
Example 2: f RRGM R/S R/S $\rightarrow 10 . R / S \rightarrow 20$. $f R R G R R / S R / S \rightarrow 10 . R / S \rightarrow 19$. I'd say we win this one. Still no aces though.
Example 3: f RRG $R / S R / S \rightarrow 9 . R / S \rightarrow 12$. $R / S \rightarrow-22$. Bust! So many 10's. All 10's and court cards count as 10 (see lines 18-20 above).
Example 4: $f R R G / R R / S \rightarrow 7 . R / S \rightarrow 17$. $R / S \rightarrow$ 18. Ahha at last we got an ace. Too bad it's not much use. One more hit: $R / S \rightarrow-22$. Too daring $<G>$.
Example 5: f PRGM R/S R/S $\rightarrow 7 . R / S \rightarrow 17$. $R / S \rightarrow-27$.
Example 6: $f(\operatorname{PRGM} R / S R / S \rightarrow 10, R / S \rightarrow 19$. $f R R G M R / S R / S \rightarrow 10 . R / S \rightarrow 17$. Another win. But I don't think I'd do any good in a casino :-) This program is really just a 21 scorer - no betting is incorporated but we get the feel of the game.
Lines 31-39 are dedicated to counting an ace as 11 if doing so prevents bust.
Lines 40-45 just change the sign of the score if it is a bust.
$\mathrm{R}_{1}=1$ means at least one ace has been drawn. It is just a flag.
R_{0} holds the score, assuming aces count as 1 .
7. FRUIT MACHINE. Set $i \in R_{1}$ (bank,e.g. \$10). Repeat: $R / S \rightarrow$ next win. To
 view bank just RCL 1. Restart: Just $R / S<G>$. Here again we use only $\mathrm{i}, \mathrm{R}_{0}$ and R_{1}. Wins are 0.000 ($\$ 10$ jackpot) and 18 others worth $\$ 1$ ($0.111,0.222$ etc and $0.110,0.220$ etc). Lines $1-4$ deduct $\$ 0.01$ per turn, so it's a "penny slot". For $\$ 10=1,000$ turns the expected 12C payout is $1 \cdot \$ 10+18 \cdot \$ 1=\$ 28$, a 180% payout ratio! The waiting time ($\mathrm{WT} \cap$ geometric with $\mathrm{p}=.019$) between wins averages ($1-\mathrm{p}$)/p=52 spins ($1 \mathrm{~m}: 45 \mathrm{~s}$ on 12C), so to avoid ruining the R/S key, the 12C runs till the next win. Starting with $\mathrm{i}=.5284163$ it takes $3 \mathrm{~m}: 25 \mathrm{~s}$ till the first win, 0.111 , after $\mathrm{WT}=103$ "spins". 13.6% $\left((1-.019)^{104} \approx \mathrm{e}^{-2}\right)$ of WT are over 104 spins. For the full 500,000 spin cycle, WT ranges from 1 to 568 ($\mathrm{i}=.9985843$ takes 19 minutes!), and we get $19 \cdot 500=9500$ wins (worth $\$ 9,000$ or a lot of gum<G>). The gum label above dates from 1906 and is called the "BAR" (like our 0) even on modern slot machines.

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
f P/R		f RND	13-42 14	1	27-1
f CLEAR PRGM	00-	9 FRAC	14-43 24	\div	28-10
\bullet	01-48	STO 0	15-44 0	g FRAC	29-43 24
0	02- 0	g $\mathrm{x}=0$	16-43 35	X	30- 20
1	03-1	g GTO 34	17-43,33 34	g $\mathrm{x}=0$	31-43 35
STO - 1	04-44301	\bullet	18-48	g GTO 36	32-43,33 36
RCL i	05-45 12	1	19-1	g GTO01	33-43,33 01
9	06- 9	1	20- 1	9	34-9 9
9	07- 9	1	21- 1	STO +1	35-4440 1
7	08-7	\div	22-10	1	36-
X	09- 20	9 FRAC	23-43 24	STO +1	37-4440 1
g FRAC	10-43 24	RCL) 0	24-45 0	RCL) 0	38-45 0
i	11- 12	\bullet	25-48	9 GTO 00	39-43,33 00
f 3	12-42 3	1	26-1	f P/R	

Thanks to Gene Wright who pointed me to the 49 line HP-25 slot machine program using 8 registers in the Feb 1976 PPC Journal V3N2P16. The technique in lines 18-31 above is they key to the condensed code here. The FRAC at line 14 is needed as the previous RND may give 1.000 and that .000 supplies half our jackpots (the other half come from seeds under .005). Storing the constants in registers makes no discernable difference to the speed. To stop at every spin just change line 33 to
 g GTO 38. On the new 12cp this runs 2.3 X faster, but on the first 12cp it is 3.7 X faster! Hint: 3E-7 is one of the 500,000 seeds generated when we start with $\mathrm{i}=.5284163$. $(1-.019)^{\mathrm{n}}$ is an FV with $\% \mathrm{i}=-1.9, \mathrm{PV}=-1$ and $\mathrm{PMT}=0$. The geometric approaches the continuous exponential distribution - with "lack of memory", skewness of 2, kurtosis of 6 (hardly bell shaped $<\mathrm{G}>$) and coefficient of variation=1(standard deviation=mean). The call option value for strike price K would be just $P \cdot e^{-K / P}$, if P were the mean price of an "exponential" share - nice and simple!
8. And one of skill: LUNAR LANDER R/S see VV.0hhh=-50.0500, Fuel=60,"3-2-1-0" Repeat: Interrupt at the " 0 ", Burn, R/S, till crash or land. Restart: f PRGM R/S Refer to Kalevipoeg's "Moon Landing Simulator" posted on www.hpmuseum.org on 4 Oct 2005. This one calculates the correct crash velocity. You are 500 feet (hhh) descending at $50 \mathrm{ft} / \mathrm{sec}(\mathrm{VV})$ with 60 units of fuel to burn. Careful with it! It's not supposed to be a "Lunar Crater Maker" :-) Only 4 registers are used: $\mathrm{R}_{1}=\mathrm{h}, \mathrm{R}_{2}=\mathrm{V}, \mathrm{R}_{3}=$ fuel and $\mathrm{R}_{4}=$ acceleration.

Keystrokes	Display	Keystrokes	Display	Keystrokes	Display
f P/R		RCL 2	25-45 2	RCL2	51-45 2
f CLEAR PRGM	00-	g LSTX	26-43 36	RCL 4	52-45 4
5	01- 5	+	27-40	STO +2	53-44402
0	02- 0	f 4	28-42 4	2	54- 2
0	03- 0	9 PSE	29-43 31	\div	55-10
STO1	04-44 1	9 PSE	30-43 31	+	56-40
5	05- 5	RCL 3	31-45 3	ST0 +1	57-4440 1
0	06- 0	f 0	32-42 0	0	58-0
CHS	07-16	9 PSE	33-43 31	RCL1	59-45 1
STO2	08-44 2	$9 \mathrm{x}=0$	34-43 35	g $x \leq y$	60-43 34
6	09-6	g GTO63	35-43,3363	g GTO63	61-43,33 63
0	10- 0	3	36- 3	g GTO 12	62-43,33 12
STO 3	11-44 3	9 PSE	37-43 31	RCL2	63-45 2
5	12-5	2	38- 2	ENTER	64-36
CHS	13-16	9 PSE	39-43 31	X	65- 20
STO 4	14-44 4	1	40-1	RCL 4	66-45 4
1	15-1	9 PSE	41-43 31	RCL1	67-45 1
CHS	16-16	0	42- 0	X	68- 20
RCL 1	17-45 1	g PSE	43-43 31	ENTER	69-36
\%	18-25	RCL 3	44-45 3	+	70- 40
\%	19- 25		45-43 34	-	71- 30
RCL 2	20-45 2	$x \geqslant y$	46-34	$g \sqrt{x}$	72-43 21
$x \geqslant y$	21- 34	R \downarrow	47-33	CHS	73-16
-	22-30	STO -3	48-4430 3	9 PSE	74-43 31
9 x ¢	23-43 34	STO +4	49-4440 4	g GTO 74	75-43,33 74
(9 GTO 28	24-43,3328	STO +4	50-4440 4	f P/R	

The longest trip and worst crash is achieved by burning all fuel on the first cycle. We then crash at $\mathrm{v}=-96 \mathrm{ft} / \mathrm{sec}$ and the free fall time is 32 seconds ($\mathrm{RCL} 2--\mathrm{RCL} 4$ $\div \rightarrow 32$). I did manage one perfect landing with " 0 " flashing and $\mathrm{V}=\mathrm{h}=0.00$:-). It took a 14 burn sequence: $1,1,2,3,3,4,6,6,7,8,9,2,3$ and 5 . You can force iterative free-fall when all fuel is gone by pressing 1 when you see the fuel status.

The accompanying platg5.pdf contains an annotated platinum listing of games 1-4 and 8: all five fit the new 12 c platinum. Bagels is one line longer. Find out why ;-).

