
DATAFILE Vxx Nx Page 1

Emulators on the HP Prime Part 2 : Turing
Mark Power, mark.power@btinternet.com

In my first article on emulators on the Prime I presented a Chip-8 emulator that
emulated systems from the 1970s. This time, following an inspiring trip to The
National Museum of Computing (http://www.tnmoc.org) next door to Bletchley
Park, I’m going further back to 1936, the dawn of modern computing and Alan
Turing’s theoretical machine.
I first learnt about Alan Turing and his machines when studying Computer Science
in 1984. The concept of a Turing Machine was explained to us and we had
homework to produce some simple programs to run on the Computer Science
Department’s Turing Machine Emulator. Being the impatient type, I didn’t want to
cycle back to the college and type my programs into the ICL 29601 mainframe to
try them out, so having just got a HP-41CV and Extended Functions Module I
implemented possibly the world’s slowest Turing Machine emulator. If you were
at the HPCC Mini-Conference in 2009 you might remember me showing this. If
you want to run it on your HP41, look up Datafile V28N5.

Turing Machine
Hopefully you’ll have come across the concept of a Turing Machine, but in case
you haven’t here’s a recap.
The machine consists of:

• A tape that contains characters that can be read and written by a tape head.
The tape can be moved left or right, and can extend to any length. It is a
theoretical machine after all.

• A device for holding the current state.

• A table of tuples that are interpreted as the machine is run and determine
whether to write a character to tape, or move the tape left or right.

Turing Machine implementations commonly use 5-tuples, but the version I played
with used simplified 4-tuples described by Emil Post in 19472 of the form:

currentState characterReadFromTape characterToWrite/L/R newState
States are represented in the form Q1, Q2… Qn.
The 3rd part of the tuple either writes the given character to the tape in the current
position, or moves the tape, or perhaps more accurately the tape head, left or right.
To emphasise the theoretical nature of the Turing Machine, we were encouraged
not to use binary for values on the tape that I’ve seen in some recent examples
(look up Raspberry Pi Turing Machine on the Internet). Instead we used repeated

1 They are putting together an operational ICL 2966 in The National Museum of Computing
2 https://en.wikipedia.org/wiki/Post–Turing_machine

Page 2 DATAFILE Vxx Nx

1s to represent positive integers. So a tape of “1” represents the integer 0, “11”
represents 1, “111” represents 2, “1111” represents 3, etc.
An example tuple to move right along a tape containing 1s until it gets to the end
of the string of 1s would be:

Q1 1 R Q1
Assuming we start n state Q1 and there is a 1 under the tape head, move the head
right along the tape and go to state Q1. The machine then repeats this operation
until it gets to the end of the tape. As there is no tuple describing what to do next it
stops.
If you want it to do something else you would add another tuple like:

Q1 B R Q2
In this implementation B represents a blank position, so the combination of the two
tuples moves along a tape of 1s until the end and then goes into state Q2.

Duplicate
A complete example of the 4-tuples that duplicates a number on a tape is:
Q1 1 R Q1 Move over the first number
Q1 B L Q2 When we get to the B (blank) at the end move left
Q2 1 M Q2 Place Mark: Replace the 1 with a M (mark)
Q2 M R Q3 Move right past the M (mark)
Q3 1 R Q3 Move over any 1s
Q3 B R Q4 Move right over the B at the end of the number
Q4 1 R Q4 Move over the 1s that are the duplicate
Q4 B 1 Q5 At the end of the duplicate put in an extra 1
Q5 1 L Q5 Now move back to the left over all the 1s
Q5 B L Q5 and Bs
Q5 M 1 Q6 Until you get to the M (mark), replace it with a 1
Q6 1 L Q2 Go left and if over a 1 jump to Place Mark above
 If we’re at the start of the tape, we try to find tuple
 “Q2 B x Qn” but as that doesn’t exist, stop the machine

Example:
Starting with “1111” on the tape, with the tape head at the leftmost “1” and in state
Q1, this table of tuples gives a result tape of “B1111B1111”
This concept of putting a mark on the tape and using it while shuttling backwards
and forwards is the basis of multiplication and division.

DATAFILE Vxx Nx Page 3

Multiplication
Q1 1 R Q2
Q2 1 X Q2
Q2 X R Q3
Q3 1 R Q3
Q3 B R Q4
Q4 1 R Q5

Q5 1 Y Q5
Q5 Y R Q6
Q6 1 R Q6
Q6 B R Q7
Q7 1 R Q7
Q7 B 1 Q8

Q8 1 L Q8
Q8 B L Q8
Q8 Y 1 Q4
Q5 B L Q9
Q9 B L Q9
Q9 1 L Q9

Q9 X 1 Q1
Q2 B R Q10
Q10 1 R Q10
Q10 B R Q11
Q11 1 R Q11
Q11 B 1 Q12

Description:
Loop 1: Move right and put an X marker on the next 1. Move right until over the
second number on the tape.
Loop 2: Go right over “1” and place a Y marker. Go all the way right to the answer
area and place a 1. Go left back to the Y marker, replace it with a 1 and go to Loop
2. When the Y is at the end of the second number, over a B (blank), back up to the
X, replace it with a “1” and go to Loop 1.
So you’ll see the machine shuttle backwards and forwards duplicating the second
number, the number of times given by the first number
Example:
Starting with “1111B11111” on the tape, the head at the leftmost character and in a
state of Q1, this set of tuples fives a result tape of
“1111B11111B1111111111111” i.e. 3x4=12.

Integer Division
Q1 1 R Q2
Q2 B R Q3
Q3 1 R Q3
Q3 B R Q4
Q4 B 1 Q5
Q2 1 R Q6
Q6 1 R Q6
Q6 B L Q7
Q7 1 X Q7
Q7 X R Q8
Q8 B R Q8
Q8 1 R Q9

Q9 B L Q10
Q10 1 L Q10
Q10 B L Q10
Q10 X 1 Q11
Q11 1 L Q11
Q11 B E Q5
Q9 1 Y Q12
Q12 1 L Q12
Q12 B L Q12
Q12 Y L Q12
Q12 X 1 Q13
Q13 1 L Q14

Q14 1 X Q15
Q15 X R Q15
Q15 1 R Q15
Q15 B R Q15
Q15 Y 1 Q16
Q16 1 R Q21
Q14 B R Q17
Q17 1 R Q17
Q17 B R Q17
Q17 Y 1 Q18
Q18 1 R Q18
Q18 B R Q20

Q20 1 R Q20
Q20 B 1 Q5
Q21 1 Y Q12
Q21 B R Q22
Q22 B 1 Q23
Q22 1 R Q22
Q23 1 L Q23
Q23 B L Q24
Q24 1 L Q24
Q24 B R Q8

Page 4 DATAFILE Vxx Nx

Description:
Like multiply but in reverse, this shuttles backwards and forwards putting a 1 into
the answer (quotient) area every time it finds that the divisor exists within the
dividend. Two markers are used like in the multiply
Examples:
“1111111B111” gives “B1111111B111B1111” i.e. 6/2=3
“111111B111” gives “B111111B111B111” i.e. 5/2=2
“11B1” gives “E11B1B” with the “E” indicating a divide by zero error

Prime Implementation
For a change, this is one of my smaller Prime programs. I wrote it directly on the
Prime whilst on holiday, so if you have an hour or so to kill you can type it in.
Alternatively download the program and the sample tuples from
http://hpcc.org/programs/hpprime/Turing/Turing.zip
Because I typed this in on the Prime and the orange alphabetic characters are so
difficult to see in low energy lit rooms, I have abbreviated all the variable names.
So:

• p is the program, or table of tuples

• cs is the current state and ns is the new state

• tape is the tape of characters

• tp is the tape position under the head

• b is the character which is used for blank positions on the tape and to
separate numbers on the tape

• inst is the instruction to perform: “R” moves the head right, “L” moves the
head left, any other character is written to tape

• ct is the current character read from the tape/under the tape head
The table of tuples are held in the Notes area to keep them separate from the
emulator. I haven’t gone the whole hog and turned the emulator into an App,
unlike the Chip-8 emulator.
Syntax checking isn’t implemented so you must be careful typing in the tuples.
Open the Notes app (press Shift 0), press New and enter a suitable name such as
“TM DUP”. Then enter the tuples, one per line with a single space between the
different parts.
Remember that the emulator will stop if the state and character under the tape head
are not represented in the list of tuples.

DATAFILE Vxx Nx Page 5

#pragma mode(separator(.,;) integer(h32))

p,ns,ct,tape,tp,q;
inst,mode,cs,b;
black:=RGB(0,0,0);
red:=RGB(255,0,0);
white:=RGB(255,255,255);
modes:={"Key press","Slow","Medium","Fast","Very fast"};

WaitForRelease()
BEGIN

 REPEAT
 UNTIL STRING(MOUSE)="{{},{}}";

 REPEAT
 UNTIL GETKEY=-1;

END;

Init(filename)
BEGIN

 DIMGROB_P(G2,320,240);

 p:=Notes(filename);
 cs:="Q1";
 ns:="";
 ct:="";
 tp:=1;
 b:="B";
 q:="";
 inst:="";
 WaitForRelease();

END;

Page 6 DATAFILE Vxx Nx

Fetch()
BEGIN

 LOCAL ss,sq,f,rhs,keepRunning;

 ct:=MID(tape,tp,1);
 ss:=cs+" "+ct+" ";
 sq:=INSTRING(p,ss);

 IF sq THEN

 // Found start of quad
 q:=MID(p,sq,14);
 f:=INSTRING(q,CHAR(10));
 IF f THEN

 // Truncate quad to EOL
 q:=LEFT(q,f-1);

 END;

 rhs:=MID(q,SIZE(ss)+1);
 inst:=LEFT(rhs,1);
 ns:=MID(rhs,3);
 keepRunning:=1;

 ELSE
 keepRunning:=0;

 END;

 RETURN(keepRunning);
END;

MoveRight()
BEGIN

 tp:=tp+1;

 // Extend tape if pointer is past end

DATAFILE Vxx Nx Page 7

 IF tp>SIZE(tape) THEN
 tape:=tape+b;

 END;
END;

MoveLeft()
BEGIN

 IF tp==1 THEN
 // Extend tape to left
 tape:=b+tape;

 ELSE
 tp:=tp-1;

 END;
END;

WriteToTape()
BEGIN

 tape(tp):=inst;
END;

Execute()
BEGIN

 CASE
 IF inst=="R" THEN MoveRight() END;
 IF inst=="L" THEN MoveLeft() END;
 DEFAULT WriteToTape();

 END;

 cs:=ns;
END;

Page 8 DATAFILE Vxx Nx

Output(m)
BEGIN

 LOCAL ls:="";
 LOCAL ms:="";
 LOCAL rs:="";
 LOCAL t:="";

 CASE

 IF tp==1 THEN
 ms:=LEFT(tape,1);
 rs:=MID(tape,2);

 END;

 IF tp==SIZE(tape) THEN
 ls:=LEFT(tape,SIZE(tape)-1);
 ms:=MID(tape,SIZE(tape));

 END;

 DEFAULT

 ls:=LEFT(tape,tp-1);
 ms:=MID(tape,tp,1);
 rs:=MID(tape,tp+1);

 END;

 t:=ls+"["+ms+"]"+rs;

 RECT(G2,white);
 TEXTOUT_P(q,G2,0,0,2,black);
 TEXTOUT_P(t,G2,0,20,2,black);
 TEXTOUT_P(m,G2,0,40,2,black);
 BLIT_P(G0,G2);

END;

DATAFILE Vxx Nx Page 9

HandleMode()
BEGIN

CASE
 IF mode==1 THEN WAIT(-1); END;
 IF mode==2 THEN WAIT(1); END;
 IF mode==3 THEN WAIT(0.5); END;
 IF mode==4 THEN WAIT(0.25); END;
 DEFAULT
 // As fast as possible

 END;

 WaitForRelease();
END;

EXPORT Turing()
BEGIN

 LOCAL filename,v;
 tape:="1";
 cs:="Q1";
 b:="B";
 v:=INPUT({{filename,Notes()}, {mode,modes}, {tape,[2]}, {cs,[2]},

{b,[2]}}, "Turing Machine Simulator", {"Program", "Run mode", "Initial tape",
"Initial state", "Blank character"});

 IF v THEN
 Init(filename);
 Output("");
 HandleMode();
 WHILE Fetch() DO

 Output("");
 Execute();
 HandleMode();

Page 10 DATAFILE Vxx Nx

 END;
 Output("Finished");
 WaitForRelease();
 FREEZE;

 END;
 RETURN(tape);

END;

Instructions
Type in or download the example tuples and paste them into the Communication
Kit with your Prime connected. I called them “TM DUP”, “TM MUL” and “TM
DIV”. These will appear in setup screen when you run the Turing program.

Start screen where you can select the
program to run, whether you want to
manually step through the program or
let it run automatically and at what
speed, the tape you want to start with,
the initial state and character used for
blanks on the tape.

The multiplication program part way
through showing the tuple just
executed, the tape with X and Y
markers, the partial result and the tape
head, indicated by [],at the rightmost
end of the tape having just written a
1.

DATAFILE Vxx Nx Page 11

The multiplication ended. In this
case showing the result of
multiplying 4 by 3 and showing 12
(represented by 13 1s). When you
press a key to leave the program the
tape is returned to the stack.
The picture below shows the Notes
in the Connectivity Kit with the
Turing Machine tuples for Duplicate
and Multiply.

Alan Turing, OBE, FRS
1912-1954

