
DATAFILE V23 N6 Page 13

Long Live the HP42S !
Valentín Albillo (#1075, PPC #4747)

If ever there was a praiseworthy HP calculator, the HP42S is allegedly the one. An
ill-fated model, initially intended as as replacement for the very successful HP-41
line, it was sadly maimed at a late stage in its development by redefining it to be an
HP-15C sucessor instead, thus removing all I/O and expandability (save for IR
printing), leaving it with no mass storage capabilities whatsoever and no way to
interact with external hardware or use add-in software. Even worse, it was
burdened with exactly mimicking the HP-41 internal coding for user programs and
data, a feature intended to allow it to directly run HP-41 programs loaded from
mass storage, but which now just noticeably slowed down program execution.
Adding insult to injury, though the operating system could merrily handle up to 32
Kb of RAM, it was fitted with just 7 Kb, and no official way of adding more RAM
was provided, neither was an expanded model (HP42SX) ever released.
What were we left with ? Well, a fantastic calculator which ideally expanded
classic RPN capabilities and simple-yet-effective programming model, adding such
groundbreaking features as perfectly integrated complex numbers and matrices,
where most any function would work with both (taking the sine of a matrix would
replace each element with its sine, for instance), powerful matrix editing
capabilities, named variables which could store any data object along with classic
numbered registers, rudimentary but useful graphic capabilities, expanded alpha
functionality, 2-line dot matrix display, built-in and user-defined menus, fast
program execution, low battery consumption, slim package, the works !.
Even given its painful I/O shortcomings, it still was (and is) a dream calculator,
easy to carry with you at all times, and with awesome computing power. It could
be profitably used at all levels, from student to hardened professional, and you
could write professional-looking programs for it with utmost ease due to its
ergonomic, user-friendly design.
To demonstrate the fact and to provide a non-trivial example of most of the
advanced HP42S’ capabilities and the (sometimes unexpected !) ways they can be
put to use when dealing with a particular problem, I’m providing here a sizable
program I wrote last summers explicitly for this article.

Introducing EQUEENS, “8 Queens puzzle in style”

EQUEENS was written last August while out vacationing, thanks to my best
friend (and former PPC member #4995) Fernando del Rey letting me have his
beloved HP42S for the duration. Unlikely as it seems, I’d never used an HP42S
before (despite having an unused, mint one in my collection) and found the
experience both enlightening and enjoyable. The HP42S’ capabilities really caught

Page 14 DATAFILE V23 N6

my eye, and though regrettably I paid it next to no attention when it was released, I
now consider it one of the very best models ever produced by HP and, as a “pure
programmable calculator” (alpha and meager graphics capabilities aside), probably
the very best there is, bar none.
EQUEENS provides a complete, “professional-looking” approach to the problem
of solving the classical 8-Queens Puzzle. At the time I wrote it, I was unaware that
this topic had featured recently in Datafile, namely the extremely interesting
articles “Eight Queens ... in Half” (V22 N6 Page 15) by Jordi Hidalgo, and “Eight
Queens Revisited” (V23 N4 Page 26) by Bill Butler.
As their articles were centered around the 48/49 models and I hadn’t read them at
the time, my program for the HP42S uses a different approach to find and store all
92 solutions and filter them out to extract just the 12 primary solutions. Further, the
solutions are then displayed selectively both in alphanumeric and graphic forms.
The search itself is actually fairly easy to perform and can be done in just a few
lines of code. It’s based on this simple, 9-liner BASIC program I wrote 24+ years
ago for the SHARP PC-1211, the infamous contemporary of the HP-41C:

1 A(Y)=A(Y)+1: IF A(Y)>X LET Y=Y-1: GOTO 1

2 GOTO 5

3 "A" CLEAR: INPUT "N=";X: Y=1: WAIT

4 A(Y)=1

5 IF Y=1 GOTO 8

6 FOR Z=1 TO Y-1: IF (A(Z)=A(Y))+(Y-Z=ABS(A(Z)-A(Y))) LET Z=Y: NEXT Z: GOTO 1

7 NEXT Z

8 Y=Y+1: IF Y<=X GOTO 4

9 USING: FOR W=1 TO X: PRINT "Queen at ";W;A(W): NEXT W: Y=Y-2: GOTO 1

these 9 lines of BASIC (which will work on most any SHARP pocket computer,
from the original PC-1211 onwards, simply RUN “A” or DEF “A”) will actually
find all solutions to the N-Queens problem (not just 8-Queens), and then end with
an (easily avoided) error message when there are no more solutions left.
EQUEENS uses an improved version of this algorithm (optimized and
particularized for the 8-Queens case), but the bulk of the program is dedicated to
implement the “professional” features, such as the menus, filtering, graphic
display, and last but not least, user-friendliness and thorough error trapping.
The following pages feature the Program Listing with Notes, a comprehensive
description of its inner workings, highlighting the advanced techniques and tricks
used (many of which are general enough to be used in your own programs), as well
as a sample run with step-by-step graphical instructions, and an Appendix listing
all solutions to the puzzle as found by the program.

DATAFILE V23 N6 Page 15

Program listing
Here is the program listing1. See the Notes, below, for details on how to enter some
of the lines.

 ‘EQUEENS’ (1,325 bytes)

1 You can download this listing in standard TEXT format from the HPCC web site at
http://www.hpcc.org. The resulting file can then be used with an emulator or a real 42S.

 1 LBL "EQUEENS"
 2 "8 Queens v1.0"
 3 ├" Ready"
 4 AVIEW
 5 ALL
 6 RECT
 7 XEQ "*INIT"
 8 CLMENU
 9 "DISP■"
 10 KEY 1 XEQ "*DSP"
 11 "SRCH"
 12 KEY 2 XEQ "*SRCH"
 13 "FILT"
 14 KEY 3 SEQ "*FILT"
 15 "→ALL"
 16 KEY 4 XEQ "*ALL"
 17 "→PRI"
 18 KEY 5 XEQ "*PRI"
 19 "DONE"
 20 KEY 6 GTO "*DONE"
 21 LBL 00
 22 MENU
 23 STOP
 24 GTO 00
 25 LBL "*INIT"
 26 99999999
 27 STO "J"
 28 2
 29 1
 30 NEWMAT
 31 ENTER
 32 COMPLEX
 33 STO "BOAR"
 34 STO "COOR"
 35 8
 36 1
 37 DIM "COOR"
 38 INDEX "BOAR"
 39 WRAP
 40 3
 41 1
 42 COMPLEX
 43 →
 44 3
 45 9
 46 COMPLEX
 47 →
 48 SF 01
 49 CLST
 50 RTN

 51 LBL "*DSP"
 52 "Disp while"
 53 ├" search"
 54 AVIEW
 55 FC?C 01
 56 SF 01
 57 FS? 01
 58 ├" On"
 59 FC? 01
 60 ├" Off"
 61 AVIEW
 62 "DISP"
 63 FS? 01
 64 ├"■"
 65 KEY 1 XEQ "*DSP"
 66 RTN
 67 LBL "*SRCH"
 68 0
 69 STO "S"
 70 XEQ 99
 71 SIZE 10
 72 1
 73 STO 09
 74 1
 75 DIM "SOLS"
 76 GROW
 77 INDEX "SOLS"
 78 LBL 24
 79 1
 80 STO IND 09
 81 LBL 25
 82 RCL 09
 83 1
 84 X=Y?
 85 GTO 28
 86 -
 87 1E3
 88 ÷
 89 1
 90 +
 91 STO 00
 92 LBL 20
 93 RCL IND 00
 94 RCL IND 09
 95 X=Y?
 96 GTO 21
 97 -
 98 ABS
 99 RCL 09
100 RCL 00

101 BASE-
102 X#Y?
103 GTO 27
104 LBL 21
105 1
106 RCL 09
107 X=0?
108 GTO 32
109 X#Y?
110 GTO 69
111 RCL IND 09
112 4
113 X=Y?
114 GTO 32
115 LBL 69
116 ISG IND 09
117 ABS
118 RCL IND 09
119 8
120 X>=Y?
121 GTO 25
122 DSE 09
123 ABS
124 GTO 21
125 LBL 27
126 ISG 00
127 GTO 20
128 LBL 28
129 ISG 09
130 ABS
131 8
132 RCL 09
133 X<=Y?
134 GTO 24
135 ISG "S"
136 ABS
137 TONE 5
138 1.008
139 0
140 LBL 31
141 10
142 x
143 RCL+ IND ST Y
144 ISG ST Y
145 GTO 31
146 ENTER
147 →
148 X<>Y
149 RCL "S"
150 FS? 01

Page 16 DATAFILE V23 N6

151 XEQ 55
152 XEQ 99
153 2
154 STO- 09
155 GTO 21
156 LBL 32
157 "Ok "
158 RCL "S"
159 RCL+ "S"
160 AIP
161 ├" solutions"
162 ├" found"
163 AVIEW
164 BEEP
165 RCL "S"
166 1
167 DIM "SOLS"
168 WRAP
169 RTN
170 LBL 99
171 "Searching: "
172 ARCL "S"
173 ├" found.."
174 AVIEW
175 RTN
176 LBL "*DONE"
177 "Bye!"
178 AVIEW
179 WRAP
180 EXITALL
181 SIZE 10
182 CLMENU
183 CLV "SOLS"
184 CLV "SOLP"
185 CLV "VARS"
186 CLV "BOAR"
187 CLV "COOR"
188 CLV "P"
189 CLV "S"
190 RTN
191 LBL "*ALL"
192 "All solutions"
193 AVIEW
194 SF 00
195 PSE
196 SF 25
197 INDEX "SOLS"
198 FS?C 25
199 GTO 88
200 XEQ "*SRCH"
201 GTO "*ALL"
202 LBL 88
203 RCL "S"
204 GTO 90
205 LBL "*PRI"
206 "Primary solutio"
207 ├"ns"
208 AVIEW
209 CF 00
210 PSE
211 SF 25
212 INDEX "SOLP"
213 FS?C 25
214 GTO 89

215 XEQ "*FILT"
216 GTO "*PRI"
217 LBL 89
218 RCL "P"
219 LBL 90
220 STO 00
221 0
222 STO 01
223 WRAP
224 LBL 22
225 RCLEL
226 ISG 01
227 ABS
228 RCL 01
229 XEQ 55
230 FC? 00
231 GTO 61
232 RCL "J"
233 RCLEL
234 -
235 ISG 01
236 ABS
237 RCL 01
238 XEQ 55
239 LBL 61
240 J+
241 FC?77
242 GTO 22
243 "Ok "
244 ARCL 01
245 ├" solutions"
246 ├" shown"
247 AVIEW
248 RTN
249 LBL "*FILT"
250 "Filtering.."
251 AVIEW
252 WRAP
253 SF 25
254 RCL "S"
255 FS?C 25
256 GTO 83
257 XEQ "*SRCH"
258 GTO "*FILT"
259 LBL 83
260 STO "P"
261 2
262 STO "I"
263 RCL "SOLS"
264 STO "REGS"
265 INDEX "REGS"
266 INSR
267 1
268 6
269 DIM "VARS"
270 LBL 70
271 RCL "I"
272 IP
273 RCL "P"
274 X<Y?
275 GTO 75
276 1E3
277 ÷
278 +

279 STO "I"
280 LBL 71
281 RCL IND "I"
282 "Checking Sol: "
283 AIP
284 AVIEW
285 XEQ 77
286 INDEX "VARS"
287 LBL 72
288 RCL "I"
289 1
290 BASE-
291 STO ST L
292 LBL 73
293 RCLEL
294 RCL IND ST L
295 X=Y?
296 GTO 74
297 DSE ST L
298 GTO 73
299 J+
300 FC? 77
301 GTO 72
302 ISG "I"
303 GTO 71
304 LBL 75
305 "Ok "
306 RCL "P"
307 AIP
308 ├" primary"
309 ├" solut."
310 AVIEW
311 INDEX "REGS"
312 DELR
313 RCL "REGS"
314 STO "SOLP"
315 SIZE 10
316 RTN
317 LBL 74
318 INDEX "REGS"
319 1
320 STO- "P"
321 RCL+ "I"
322 LASTX
323 STOIJ
324 DELR
325 GTO 70
326 LBL 77
327 INDEX "VARS"
328 STO 00
329 XEQ 45
330 RCL 00
331 XEQ 40
332 RCL "J"
333 RCL ST Z
334 STOEL
335 J+
336 STO 00
337 -
338 →
339 RCL 00
340 LBL 45
341 XEQ 43
342 RCL "J"

DATAFILE V23 N6 Page 17

343 RCL ST T
344 STOEL
345 J+
346 -
347 →
348 RTN
349 LBL 40
350 CLA
351 AIP
352 1
353 0
354 LBL 41
355 ATOX
356 X=0?
357 RTN
358 49
359 -
360 10^x
361 RCLx ST Z
362 +
363 ISG ST Y
364 ABS
365 GTO 41
366 LBL 43
367 CLA
368 AIP
369 0
370 LBL 44

371 -1
372 AROT
373 ATOX
374 X=0?
375 RTN
376 48
377 -
378 10
379 RCLx ST T
380 +
381 GTO 44
382 LBL 55
383 " Solution #"
384 AIP
385 R↓

386 ├"↵ "
387 AIP
388 AVIEW
389 "U÷÷U÷÷U÷÷U÷÷"
390 ├"U÷÷U÷÷U÷÷U÷÷"
391 RCL "BOAR"
392 AGRAPH
393 R↓
394 CLA
395 AIP
396 RCLIJ
397 COMPLEX
398 INDEX "COOR"

399 1.01502
400 LBL 50
401 ATOX
402 48
403 -
404 3
405 x
406 RCL ST Y
407 COMPLEX
408 →
409 R↓
410 ISG ST X
411 GTO 50
412 "∫∫"
413 RCL "COOR"
414 AGRAPH
415 STOP
416 R↑
417 COMPLEX
418 FS? 00
419 INDEX “SOLS”
420 FC? 00
421 INDEX “SOLP”
422 STOIJ
423 END

Notes
• Lines 9 and 64 include the small block character found in the MISC submenu

of the ALPHA menu, lines 102 and 109 are the “X not equal Y” logical test,
and line 383 begins with exactly five spaces.

• Line 386 begins with a “Line Feed” character “L/F” shown in the listing with
the symbol “↵“. You must enter the correct Line Feed character instead, which
can be found at the end of the second row of the PUNC submenu of the
ALPHA menu. Once entered, place exactly five spaces after it.

• Line 412 includes two “Integral” characters, which can be found in the MATH
submenu of the ALPHA menu.

Programming details & techniques
This program is intended as a comprehensive demo of many HP42S’ advanced
capabilities and the professional style of programming it encourages, featuring
user-friendly menus and prompts, labeled and graphics output, error trapping and
logic to detect and perform necessary actions when omitted by the user.
This being so, program’s length is a secondary concern and thus as many lines as
necessary are used to achieve the goal, while still optimizing each and every
routine. A detailed explanation of the application’s inner workings follows,
discussing relevant techniques as appropriate:

Page 18 DATAFILE V23 N6

• All user-callable internal routines featured in the menu have suitably
meaningful names beginning with a “*” so you’ll be able to recognize in the
Catalog that they’re internal to this application. Other internal routines use
numeric labels instead. This makes the listing more readable without wasting
memory, slowing down the process, or cluttering up the catalog.

• “EQUEENS” (Eight Queens) is the application’s main entry point. First of all,
lines 1-24 show a welcome message to the user identifying the application’s
version, then “*INIT” is called to initialize, the menu is built, and a loop is
entered where the menu is shown after each menu option is completed.

• The “*INIT” (Initialization) routine (lines 25-50) initializes all global variables
used by the application, and a pair of complex matrices, namely BOAR
(Board), which is used to draw the 8x8 board very quickly, and COOR
(Coordinates), used to draw each solution’s queens over the board. It also stores
a constant used to rapidly generate a symmetric solution and sets a flag used to
specify whether or not the application will display each solution as it is found.

• The “*DSP” (Display as found) routine (51-66) is called from the menu option
 to toggle On/Off the immediate display of each solution as it’s found

during the search. A message is shown specifying the current setting, and the
menu option is recreated with a small block appended if the status is On.

• The “*SRCH” (Search) routine (67-169) is called from the menu option
to search for all solutions to the puzzle, which are stored (and optionally
displayed) upon finding. The number of solutions is kept in variable S, which is
initially cleared (68-69), 10 numbered registers are allocated (71) and a matrix
SOLS is created to hold the solutions with the smallest possible initial size, but
specifying it’ll automatically grow as each element is filled in (72-77).
The search itself (78-155) is the heart of the application, a simple affair of
exhaustively trying in turn all possible legal places for each queen,
backtracking when a newly placed one is found to be under attack from some
other. Registers 00 and 09 are used as indexes and each of the registers 01-08,
their numeric addresses acting as rows, store the column position of the queen
in that row. When the last queen is successfully placed, the number of solutions
is incremented and a tight loop is entered (135-145) to coalesce said 8 registers’
contents into a single 8-digit number (17582463, say) , the position of each digit
being the row number, and the digit itself being the column number for each
queen. The solution is then stored in matrix SOLS (77, 147) and if the user
opted to display each solution when found, a call is made to immediately
display it (148-152). The search for further solutions is then resumed (153-155).
When the search is over, execution branches to label 32, where the total number
of solutions is assembled and displayed, minor cleaning is performed and
execution returns to the menu (156-169). Several techniques worth mentioning:

- One of the 42S’ Enhanced RPN greatest assets is the possibility of using
both registers addressed by number as in previous RPN models, as well

DATAFILE V23 N6 Page 19

as named variables. Both types have their strengths, but best is to
combine them, taking advantage of their intrinsic characteristics when
needed. Here we’re using the numeric registers as a fast, memory-saving
scratch area, using them for multiple indexing and looping, dinamically
allocated as needed, while the named variables (SOLS, BOAR, COOR,
etc.) are used for more permanent, global data.
Even better, the 42S allows the user to handle all numeric registers en
masse as a single named variable, the REGS matrix. This is put to good
use when filtering the solutions to extract just the primary ones (259-
325). All solutions are placed in the REGS variable so that we can handle
them easily, and have the REGS matrix shrinking in size (312, 324) as
derived, non-primary solutions are identified and discarded.

- Also, we need not check all 8 columns for the position of the 1st queen, as
symmetry considerations mean that a queen placed at columns 5-8 gives
a mirror-symmetric solution to any already found for columns 1-4. So,
our search needs only check columns 1-4, thus halving both the search
time and the storage requirements for the solutions. Each solution found
actually stands for two, and this is reflected (158-159) when reporting the
number of solutions found and further on when filtering the solutions to
find out the primary, non-equivalent solutions

- Finally, note how the rarely seen BASE- instruction is used (101) to save
time and program steps while computing INT(R09)-INT(R00). Both
index registers hold fractional parts at the time but we’re only interested
in the result of subtracting their integer parts, and BASE- saves 3 lines
and runs faster over the usual construct RCL 09, INT, RCL 00, INT, - .
The same technique is used at line 290.

• The “*DONE” (Done with program) routine (176-190) is called from the user
menu option , and simply ends the application. It includes clearing the
menu and the named variables so that they don’t take up space and clutter the
variables catalog (182-189), resizing the numeric registers (181), and
terminating execution with a farewell message (177-178). This kind of clean-up
is essential for any program and greatly contributes to the “professional” look.
Notice how the message is shown immediately upon entering the routine, so that
the user feels a quick response time when selecting the option. While reading it,
the routine performs its task and finishes, with no perceived running time !

• The “*ALL” (Display all solutions) routine (191-248, partly shared with the
“*PRI” routine) displays all solutions previously found and stored by
“*SRCH” (Search), and is called from the user menu option . First of all
it sets a flag (194) later used in the shared routine (219-248) to distinguish
between “*ALL” and “*PRI”, then tries to detect and cater for the fact that
perhaps the user forgot to perform the search before pressing , efectively
attempting to display solutions that haven’t been found and stored yet !.

Page 20 DATAFILE V23 N6

This is accomplished (196-204) by raising Flag 25 and trying to index the
SOLS matrix, where all solutions are stored. If they haven’t been stored yet, the
SOLS matrix does not exist, so indexing it fails and Flag 25 gets cleared. This
is detected and a call to “*SRCH” (Search) is automatically performed on
behalf of the user, then execution goes to “*ALL” to try again.
If the indexing is successful, execution goes to the shared routine (see “*PRI”),
with the number of solutions to display in the X register. This detection
mechanism effectively allows the user to execute options out of order: if any
necessary data are missing, the application will automatically detect the fact and
get them first, without bothering the user with error messages/prompts and
without enforcing a fixed order of operation. This enhances user-friendliness.

• The “*PRI” (Display primary solutions) routine (205-248, partly shared with
the “*ALL” routine) displays only the primary solutions previously found and
stored by “*FILT” (Filter solutions), and is called from the user menu option

. It clears a flag (209) later used in the shared routine, then checks if the
user actually forgot filtering the solutions () before pressing , thus
trying to display primary solutions not filtered out and stored yet.
As before, this is accomplished (211-216) by raising Flag 25 and trying to index
the SOLP matrix, where primary solutions are stored. If the primary solutions
haven’t been filtered yet, the SOLP matrix doesn’t exist and Flag 25 is cleared,
which triggers a call to “*FILT” (Filter) to automatically do the proper thing
without bothering the user, then execution goes back to “*PRI” for a retry.
Once successful, the shared routine is executed with the number of primary
solutions to display in X. This routine (219-248) recalls in turn all elements of
the indexed matrix (SOLS or SOLP), which are the stored solutions
(respectively, all or primary) and passes them and their index number, to
subroutine 55 (225-229), which creates and shows the actual graphics display.
For All Solutions, after displaying each of them we then generate its mirror-
symmetrical counterpart and call subroutine 55 again (232-238), then the next
element is selected and the loop termination condition (Flag 77) is checked
(239-242). Finally the number of solutions displayed is shown (243-248).

• The “*FILT” (Filter solutions) routine (249-325) is called from the user menu
option , to filter all solutions found and select just the primary ones,
which get stored in matrix SOLP for later display. It does this by recognizing
and discarding all equivalent solutions, either generated by a symmetry or a
rotation of a primary solution. For instance, given any solution, you can derive
3 additional ones by left-right and top-bottom mirror symmetries, like this:

DATAFILE V23 N6 Page 21

Apart from symmetry, you can also derive further solutions by rotating a given
solution, like this example where a 90º counter-clockwise rotation is applied:

By using reflections and rotations you can derive up to 7 additional equivalent
solutions starting from a given one, except if it’s symmetrical to boot, where
you’ll get less than 7 distinct derived solutions. This is the case here, because
our puzzle has 12 primary solutions, which normally would result in 12*8 =
96 solutions in all, except for the fact that one of the primary solutions is
symmetrical, thus limiting the maximum number of solutions to just 92.

Page 22 DATAFILE V23 N6

Once again, “*FILT” raises Flag 25 and tries to determine if there are solutions
to filter. If not, it calls “*SRCH”, then tries again (253-258). Else, all solutions
stored in SOLS are copied to REGS, which brings us two benefits:

- as REGS is the system variable which holds all numbered registers, we
can access elements (solutions) individually using standard indirect
addressing, while we simultaneously use matrix element addressing with
another matrix variable. Thus, we can compare (293-295) a solution
extracted from VARS (RCLEL) to another solution extracted from
REGS (RCL IND ST L). This would be very difficult to achieve using
just matrix element addressing, as we would need to constantly change
pointers back and forth with INDEX - STOIJ - RCLIJ, for instance,
while here the matrix pointers coexist and synergically cooperate with as
many indirect addressing pointers as necessary. This is seen at 280-303,
where RCLEL and J+ are intermixed with RCL IND “I” , RCL IND ST
L and ISG “I”, DSE ST L to detect and remove duplicated variants.

- as REGS is a matrix variable, we can remove elements from it, the
remaining ones automatically shifting positions to fill up the void. This is
seen in 317-325, where a duplicated solution is removed from REGS.

 “*FILT” traverses the solutions’ list (270-303) and fills up a matrix called
VARS with all symmetric and rotated variants for each solution in turn (280-
286). These are then compared against other solutions on the list (292-296), and
if there’s a match, the solution being tested is removed (317-325). Once done
with the removals, all remaining (primary) solutions are copied from REGS to
SOLP and the user is told how many primary solutions were left (304-316).

• Subroutine 77 (326-381) is an important utility routine called from *FILT”
(Filter). Given a solution in X, it fills up matrix VARS with 6 variants
generated from it by symmetries and rotations (the left-right symmetric variant
isn’t generated or tested, as it’s an implicit solution displayed by “*ALL” but
never stored in SOLS, actually). It calls lower-level internal routines (labels
40,41,43,44,45) to generate and store each variant into VARS. Use is made of
AIP (351, 368) and ATOX (355, 373) to decompose the solution (previously
placed in the Alpha register) and reform it into a variant in X. Using the Alpha
register and the stack simultaneously, we keep the decomposing and recreating
processes going on at the same time without interfering.

• Finally, subroutine 55 (382-423) is the last and very important utility routine
called from the common part of “*ALL” and “*PRI” to display each solution
both in alphanumerical and full graphical form, like this:

The board is represented by an 8x8 dot grid and each Queen is represented by a
small 2x2 block. Additionally, both the solution´s number (passed in X) and
column representation (passed in Y) are displayed as well.

DATAFILE V23 N6 Page 23

This routine uses some advanced techniques to overcome several programming
challenges, like optimizing for speed. Normally, drawing the 8x8 dot grid and
placing the queens in their proper positions would require nested loops which
take some noticeable time to run and worse, the user sees the display while
slowly forming, instead of appearing fully formed at once. This is solved by
using an advanced capability of AGRAPH which, shockingly, is totally
absent from the User’s Manual ! So much for the famed thoroughness of HP
manuals of the past ... HP42S users are supposed to buy yet another manual if
they want the smallest glimpse of this very important feature that should have
been documented in the User’s Manual to begin with.
The advanced feature is: if there’s a complex matrix in X when executing
AGRAPH, the contents of the Alpha register, interpreted as a bit pattern, will
be placed in the display beginning at the locations specified by the matrix
elements, each representing the coordinates of a pixel. See this feature in action
in lines 389-392, where the dot grid’s bit representation is placed in Alpha and
the complex matrix BOAR (previously created and filled up by “*INIT”) is
placed in X, then AGRAPH draws the 8x8 dot grid almost instantaneously.
The queens are similarly drawn all at once (412-414), the two “integral”
characters being the bit representation of a 2x2 solid block, and the COOR
complex matrix holding the precise locations for all 8 queens in this particular
solution. However, unlike the static matrix BOAR which needs be initialized
only once, the COOR matrix has to be filled up with the complex values
corresponding to the locations using a loop to dissect the solution one column
at a time (398-411) and create the appropriate complex element to be stored in
COOR (407-408). Thus, drawing the queens isn’t as fast as drawing the board
grid, but all the queens do appear at once upon execution of AGRAPH (414).
Anoher interesting technique used in this routine caters for the fact that we
need to index matrix COOR for the loop that stores the queens’ locations, but
actually subroutine 55 is called inside another loop which traverses the
solutions (all/primary) and thus has previously indexed either SOLS or SOLP .
But the 42S doesn’t allow having more than one indexed matrix at a time !
The answer is to keep track of the index position in the 1st matrix (SOLS or
SOLP) so that it can be restored back after we’re finished with the 2nd matrix
(COOR). This is cleverly done at 396-397, where the index position is recalled
and converted to a complex number so that row/column pointers use up a single
stack entry, restored back at 416-422. The complex value is split into its two
components and the matrix (SOLS or SOLP) is re-indexed before restoring the
index. Combining both pointers into a single complex value allows them to
float on the stack during the proceedings, thus no need to save them elsewhere.
This technique can be profitably used in many different situations.

Page 24 DATAFILE V23 N6

Usage
To begin executing the application, simply:

XEQ “EQUEENS”
The program will initialize and the menu will appear:

As you can see by the small block in the option, displaying each solution as
they’re found is On by default (interactive mode). We’d rather search for all
solutions without pausing to display any, so that the program can run unattended
and we can have a cup of tea while the search goes on, so we’ll deactivate it:
Click

The menu refreshes and a confirming message does appear:

Now we’ll start the search for good, click

This will search for and store all solutions to the puzzle. It’s a lengthy process so
you’d better leave the program alone and go attend other businesses. The display
will refresh as each solution is found, like this:

...
When all solutions have been found, the menu will be displayed again, with an
informative message telling us just how many solutions were found, 92 in all:

Now we’ll filter the solutions to extract the primary ones, which aren’t reflections
or rotations of one another. To start the filtering process, simply click

DATAFILE V23 N6 Page 25

The filtering process will begin. It’ll take much less time than the previous search,
and while it goes on, the display will refresh to inform you of the particular
solution being tested at the moment, like this:

 ...
...
When the filtering is over, the menu will appear again and an informative message
will tell you how many primary solutions were found and stored, 12 in all:

Now that the search and filtering are over, we want to display the solutions found:
Click

A message confirming the operation will appear, then each solution in turn :

 ...

Press to display the next solution, and so on until the last one:

Press one last time to return to the menu:

If you want to display just the primary solutions, simply click

 ...

Page 26 DATAFILE V23 N6

Press to display the next primary solution, and so on until:

Press one last time to return to the menu:

That’s all. Now, to end the application and clean up, simply click
Clean-up is performed, a farewell message is displayed and the application ends:

Appendix A: All solutions

All 92 solutions; the 12 primary solutions are in bold face and underlined:

15863724 84136275 16837425 83162574 17468253 82531746
17582463 82417536 24683175 75316824 25713864 74286135
25741863 74258136 26174835 73825164 26831475 73168524
27368514 72631485 27581463 72418536 28613574 71386425
31758246 68241753 35281746 64718253 35286471 64713528
35714286 64285713 35841726 64158273 36258174 63741825
36271485 63728514 36275184 63724815 36418572 63581427
36428571 63571428 36814752 63185247 36815724 63184275
36824175 63175824 37285146 62714853 37286415 62713584
38471625 61528374 41582736 58417263 41586372 58413627
42586137 57413862 42736815 57263184 42736851 57263148
42751863 57248136 42857136 57142863 42861357 57138642
46152837 53847162 46827135 53172864 46831752 53168247
47185263 52814736 47382516 52617483 47526138 52473861
47531682 52468317 48136275 51863724 48157263 51842736
48531726 51468273

